Cargando…
Biochemical and molecular analysis of Camellia sinensis (L.) O. Kuntze tea from the selected P/11/15 clone
Green tea is one of the most important beverages consumed across the world and it possesses various phytotherapeutics. Polyphenol oxidase (PPO) activity, total polyphenols, catechins, amino acid content and enzymatic antioxidants are considered to be potential parameters in tea characterization. P/1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academy of Scientific Research and Technology, Egypt
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299898/ https://www.ncbi.nlm.nih.gov/pubmed/30647599 http://dx.doi.org/10.1016/j.jgeb.2015.12.004 |
Sumario: | Green tea is one of the most important beverages consumed across the world and it possesses various phytotherapeutics. Polyphenol oxidase (PPO) activity, total polyphenols, catechins, amino acid content and enzymatic antioxidants are considered to be potential parameters in tea characterization. P/11/15 clone (Camellia sinensis (L) O. Kuntze) was chosen to analyze the biochemical characterization and to analyze the gene expression pattern. The selected P/11/15 clone (C. sinensis (L) O. Kuntze) possess potent Polyphenol oxidase (49.62 U/mg of protein), sufficient catechin (20.75%), Polyphenol (20.01%), Peroxidase (450.08 μM of O(2) formed min(−1) g(−1) dry weight), Catalase (1.20 μM H(2)O(2) reduced min(−1) mg(−1) protein) and Super Oxide Dismutase (45.11 U/mg proteins). Flavonoid gene expression reveals ANR (1.66%) and F3H (1.02%) were up regulated in the selected P/11/15 clone. The results obtained suggest that P/11/15 clone showed adequate enzyme levels, thus an increased antioxidant activity. |
---|