Cargando…
Designing Reciprocative Dynamic Linking to improve learners’ Representational Competence in interactive learning environments
Learning from interactive learning environments enriched with multiple external representations (MERs) is often beneficial. The learning benefits of MERs highly rely on the development of Representational Competence. Representational Competence refers to an ability to translate and see relations bet...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302858/ https://www.ncbi.nlm.nih.gov/pubmed/30613259 http://dx.doi.org/10.1186/s41039-017-0046-8 |
Sumario: | Learning from interactive learning environments enriched with multiple external representations (MERs) is often beneficial. The learning benefits of MERs highly rely on the development of Representational Competence. Representational Competence refers to an ability to translate and see relations between MERs. The relevant research findings have consistently reported learners’ difficulty in relating and translating in MERs due to insufficient development of Representational Competence. Although dynamic linking is one of the strategies recommended to address this issue, it offers mixed results. This paper reports design of a new interaction feature that overcomes some of the limitations of traditional dynamically linked representations. We designed an additional interaction in dynamically linked MERs to support learners’ cognitive demands; we refer to this as Reciprocative Dynamic Linking. The goal of this additional affordance was to strengthen learners’ cross-representation cognitive linkage by promoting Representational Competence. The paper reports the study conducted to investigate effects of Reciprocative Dynamic Linking on students’ Representational Competence. The said study was conducted in a course on Signals and Systems from Electrical Engineering program (N = 24). The subjects were assigned to two conditions: a Simulation and a Simulation with Reciprocative Dynamic Linking. The representation competence was assessed with an instrument for measuring Representational Competence within Signals and Systems domain. The effect of Reciprocative Dynamic Linking on learners’ cognitive load was also investigated. The results confirmed that Reciprocative Dynamic Linking could lead to improvement in Representational Competence and thus, higher learning for “Apply and Analyze Procedural knowledge” categories of tasks. Reciprocative Dynamic Linking also promoted germane cognitive load of learners, as it could offer the required cognitive support to improve learners’ Representational Competence. The findings from semi-structured interviews and screen capture analysis corroborated the results. This paper provides details of how to design Reciprocative Dynamic Linking in interactive learning environments and its effect on learners’ Representational Competence. Apart from establishing learning effectiveness of Reciprocative Dynamic Linking, the study further contributes by confirming the role of cognitive processing of learners while learning from interactive learning environments. The findings from the study suggest designing strategies not for just creating highly interactive learning environments but equipping a given learning environment with conducive interaction features that foster learning. |
---|