Cargando…
DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information
Humans are capable of complex manipulation interactions with the environment, relying on the intrinsic adaptability and compliance of their hands. Recently, soft robotic manipulation has attempted to reproduce such an extraordinary behavior, through the design of deformable yet robust end-effectors....
Autores principales: | Arapi, Visar, Della Santina, Cosimo, Bacciu, Davide, Bianchi, Matteo, Bicchi, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304372/ https://www.ncbi.nlm.nih.gov/pubmed/30618707 http://dx.doi.org/10.3389/fnbot.2018.00086 |
Ejemplares similares
-
Control Architecture for Human-Like Motion With Applications to Articulated Soft Robots
por: Angelini, Franco, et al.
Publicado: (2020) -
Postural Hand Synergies during Environmental Constraint Exploitation
por: Della Santina, Cosimo, et al.
Publicado: (2017) -
Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks
por: Melnik, Andrew, et al.
Publicado: (2021) -
Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps
por: Bimbo, Joao, et al.
Publicado: (2019) -
Hand-Object Interaction: From Human Demonstrations to Robot Manipulation
por: Carfì, Alessandro, et al.
Publicado: (2021)