Cargando…
Prediction of deleterious mutations in coding regions of mammals with transfer learning
The genomes of mammals contain thousands of deleterious mutations. It is important to be able to recognize them with high precision. In conservation biology, the small size of fragmented populations results in accumulation of damaging variants. Preserving animals with less damaged genomes could opti...
Autores principales: | Plekhanova, Elena, Nuzhdin, Sergey V., Utkin, Lev V., Samsonova, Maria G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304693/ https://www.ncbi.nlm.nih.gov/pubmed/30622632 http://dx.doi.org/10.1111/eva.12607 |
Ejemplares similares
-
A Pipeline for Classifying Deleterious Coding Mutations in Agricultural Plants
por: Kovalev, Maxim S., et al.
Publicado: (2018) -
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
por: Le, David, et al.
Publicado: (2020) -
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning
por: Lo, Julian, et al.
Publicado: (2020) -
Deleterious alleles in the context of domestication, inbreeding, and selection
por: Bosse, Mirte, et al.
Publicado: (2018) -
Assessing Confidence in Root Placement on Phylogenies: An Empirical Study
Using Nonreversible Models for Mammals
por: Naser-Khdour, Suha, et al.
Publicado: (2021)