Cargando…
Why the Energy Landscape of Barnase Is Hierarchical
We have used NMR and computational methods to characterize the dynamics of the ribonuclease barnase over a wide range of timescales in free and inhibitor-bound states. Using temperature- and denaturant-dependent measurements of chemical shift, we show that barnase undergoes frequent and highly popul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306431/ https://www.ncbi.nlm.nih.gov/pubmed/30619881 http://dx.doi.org/10.3389/fmolb.2018.00115 |
_version_ | 1783382780120399872 |
---|---|
author | Pandya, Maya J. Schiffers, Stefanie Hounslow, Andrea M. Baxter, Nicola J. Williamson, Mike P. |
author_facet | Pandya, Maya J. Schiffers, Stefanie Hounslow, Andrea M. Baxter, Nicola J. Williamson, Mike P. |
author_sort | Pandya, Maya J. |
collection | PubMed |
description | We have used NMR and computational methods to characterize the dynamics of the ribonuclease barnase over a wide range of timescales in free and inhibitor-bound states. Using temperature- and denaturant-dependent measurements of chemical shift, we show that barnase undergoes frequent and highly populated hinge bending. Using relaxation dispersion, we characterize a slower and less populated motion with a rate of 750 ± 200 s(−1), involving residues around the lip of the active site, which occurs in both free and bound states and therefore suggests conformational selection. Normal mode calculations characterize correlated hinge bending motions on a very rapid timescale. These three measurements are combined with previous measurements and molecular dynamics calculations on barnase to characterize its dynamic landscape on timescales from picoseconds to milliseconds and length scales from 0.1 to 2.5 nm. We show that barnase has two different large-scale fluctuations: one on a timescale of 10(−9)−10(−6) s that has no free energy barrier and is a hinge bending that is determined by the architecture of the protein; and one on a timescale of milliseconds (i.e., 750 s(−1)) that has a significant free energy barrier and starts from a partially hinge-bent conformation. These two motions can be described as hierarchical, in that the more highly populated faster motion provides a platform for the slower (less probable) motion. The implications are discussed. The use of temperature and denaturant is suggested as a simple and general way to characterize motions on the intermediate ns-μs timescale. |
format | Online Article Text |
id | pubmed-6306431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63064312019-01-07 Why the Energy Landscape of Barnase Is Hierarchical Pandya, Maya J. Schiffers, Stefanie Hounslow, Andrea M. Baxter, Nicola J. Williamson, Mike P. Front Mol Biosci Molecular Biosciences We have used NMR and computational methods to characterize the dynamics of the ribonuclease barnase over a wide range of timescales in free and inhibitor-bound states. Using temperature- and denaturant-dependent measurements of chemical shift, we show that barnase undergoes frequent and highly populated hinge bending. Using relaxation dispersion, we characterize a slower and less populated motion with a rate of 750 ± 200 s(−1), involving residues around the lip of the active site, which occurs in both free and bound states and therefore suggests conformational selection. Normal mode calculations characterize correlated hinge bending motions on a very rapid timescale. These three measurements are combined with previous measurements and molecular dynamics calculations on barnase to characterize its dynamic landscape on timescales from picoseconds to milliseconds and length scales from 0.1 to 2.5 nm. We show that barnase has two different large-scale fluctuations: one on a timescale of 10(−9)−10(−6) s that has no free energy barrier and is a hinge bending that is determined by the architecture of the protein; and one on a timescale of milliseconds (i.e., 750 s(−1)) that has a significant free energy barrier and starts from a partially hinge-bent conformation. These two motions can be described as hierarchical, in that the more highly populated faster motion provides a platform for the slower (less probable) motion. The implications are discussed. The use of temperature and denaturant is suggested as a simple and general way to characterize motions on the intermediate ns-μs timescale. Frontiers Media S.A. 2018-12-20 /pmc/articles/PMC6306431/ /pubmed/30619881 http://dx.doi.org/10.3389/fmolb.2018.00115 Text en Copyright © 2018 Pandya, Schiffers, Hounslow, Baxter and Williamson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Pandya, Maya J. Schiffers, Stefanie Hounslow, Andrea M. Baxter, Nicola J. Williamson, Mike P. Why the Energy Landscape of Barnase Is Hierarchical |
title | Why the Energy Landscape of Barnase Is Hierarchical |
title_full | Why the Energy Landscape of Barnase Is Hierarchical |
title_fullStr | Why the Energy Landscape of Barnase Is Hierarchical |
title_full_unstemmed | Why the Energy Landscape of Barnase Is Hierarchical |
title_short | Why the Energy Landscape of Barnase Is Hierarchical |
title_sort | why the energy landscape of barnase is hierarchical |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306431/ https://www.ncbi.nlm.nih.gov/pubmed/30619881 http://dx.doi.org/10.3389/fmolb.2018.00115 |
work_keys_str_mv | AT pandyamayaj whytheenergylandscapeofbarnaseishierarchical AT schiffersstefanie whytheenergylandscapeofbarnaseishierarchical AT hounslowandream whytheenergylandscapeofbarnaseishierarchical AT baxternicolaj whytheenergylandscapeofbarnaseishierarchical AT williamsonmikep whytheenergylandscapeofbarnaseishierarchical |