Cargando…

An Eight-Direction Scanning Detection Algorithm for the Mapping Robot Pathfinding in Unknown Indoor Environment

Aiming at the problem of how to enable the mobile robot to navigate and traverse efficiently and safely in the unknown indoor environment and map the environment, an eight-direction scanning detection (eDSD) algorithm is proposed as a new pathfinding algorithm. Firstly, we use a laser-based SLAM (Si...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Le, Zhao, Pengcheng, Dong, Wei, Li, Jiayuan, Ai, Mingyao, Wu, Xuan, Hu, Qingwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308539/
https://www.ncbi.nlm.nih.gov/pubmed/30518041
http://dx.doi.org/10.3390/s18124254
Descripción
Sumario:Aiming at the problem of how to enable the mobile robot to navigate and traverse efficiently and safely in the unknown indoor environment and map the environment, an eight-direction scanning detection (eDSD) algorithm is proposed as a new pathfinding algorithm. Firstly, we use a laser-based SLAM (Simultaneous Localization and Mapping) algorithm to perform simultaneous localization and mapping to acquire the environment information around the robot. Then, according to the proposed algorithm, the 8 certain areas around the 8 directions which are developed from the robot’s center point are analyzed in order to calculate the probabilistic path vector of each area. Considering the requirements of efficient traverse and obstacle avoidance in practical applications, the proposal can find the optimal local path in a short time. In addition to local pathfinding, the global pathfinding is also introduced for unknown environments of large-scale and complex structures to reduce the repeated traverse. The field experiments in three typical indoor environments demonstrate that deviation of the planned path from the ideal path can be kept to a low level in terms of the path length and total time consumption. It is confirmed that the proposed algorithm is highly adaptable and practical in various indoor environments.