Cargando…
Indoor Pedestrian Self-Positioning Based on Image Acoustic Source Impulse Using a Sensor-Rich Smartphone
The ubiquity of sensor-rich smartphones provides opportunities for a low-cost method to track indoor pedestrians. In this situation, pedestrian dead reckoning (PDR) is a widely used technology; however, its cumulative error seriously affects its accuracy. This paper presents a method of combining in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308701/ https://www.ncbi.nlm.nih.gov/pubmed/30486301 http://dx.doi.org/10.3390/s18124143 |
Sumario: | The ubiquity of sensor-rich smartphones provides opportunities for a low-cost method to track indoor pedestrians. In this situation, pedestrian dead reckoning (PDR) is a widely used technology; however, its cumulative error seriously affects its accuracy. This paper presents a method of combining infrastructure-free indoor acoustic self-positioning with PDR self-positioning, which verifies the rationality of PDR results through the acoustic constraint between a sound source and its image sources. We further determine the first-order echo delay measurements, thus obtaining the mobile user position. We verify that the proposed method can achieve a continuous self-positioning median error of 0.19 m, and the error probability below 0.12 m is 54.46%, which indicates its ability to eliminate PDR error, as well as its adaptability to environmental disturbances. |
---|