Cargando…

Observable Degree Analysis for Multi-Sensor Fusion System

Multi-sensor fusion system has many advantages, such as reduce error and improve filtering accuracy. The observability of the system state is an important index to test the convergence accuracy and speed of the designed Kalman filter. In this paper, we evaluate different multi-sensor fusion systems...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Zhentao, Chen, Tianxiang, Ge, Quanbo, Wang, Hebin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308951/
https://www.ncbi.nlm.nih.gov/pubmed/30513624
http://dx.doi.org/10.3390/s18124197
Descripción
Sumario:Multi-sensor fusion system has many advantages, such as reduce error and improve filtering accuracy. The observability of the system state is an important index to test the convergence accuracy and speed of the designed Kalman filter. In this paper, we evaluate different multi-sensor fusion systems from the perspective of observability. To adjust and optimize the filter performance before filtering, in this paper, we derive the expression form of estimation error covariance of three different fusion methods and discussed both observable degree of fusion center and local filter of fusion step. Based on the ODAEPM, we obtained their discriminant matrix of observable degree and the relationship among different fusion methods is given by mathematical proof. To confirm mathematical conclusion, the simulation analysis is done for multi-sensor CV model. The result demonstrates our theory and verifies the advantage of information fusion system.