Cargando…
Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons
Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB–BDNF...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314548/ https://www.ncbi.nlm.nih.gov/pubmed/30373907 http://dx.doi.org/10.1083/jcb.201805016 |
_version_ | 1783384115140100096 |
---|---|
author | Olenick, Mara A. Dominguez, Roberto Holzbaur, Erika L.F. |
author_facet | Olenick, Mara A. Dominguez, Roberto Holzbaur, Erika L.F. |
author_sort | Olenick, Mara A. |
collection | PubMed |
description | Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB–BDNF-signaling endosomes in primary hippocampal neurons. Hook1 comigrates with a subpopulation of Rab5 endosomes positive for TrkB and BDNF, which exhibit processive retrograde motility with faster velocities than the overall Rab5 population. Knockdown of Hook1 significantly reduced the motility of BDNF-signaling endosomes without affecting the motility of other organelles. In microfluidic chambers, Hook1 depletion resulted in a significant decrease in the flux and processivity of BDNF-Qdots along the mid-axon, an effect specific for Hook1 but not Hook3. Hook1 depletion inhibited BDNF trafficking to the soma and blocked downstream BDNF- and TrkB-dependent signaling to the nucleus. Together, these studies support a model in which differential association with cargo-specific effectors efficiently regulates dynein in neurons. |
format | Online Article Text |
id | pubmed-6314548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63145482019-07-07 Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons Olenick, Mara A. Dominguez, Roberto Holzbaur, Erika L.F. J Cell Biol Research Articles Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB–BDNF-signaling endosomes in primary hippocampal neurons. Hook1 comigrates with a subpopulation of Rab5 endosomes positive for TrkB and BDNF, which exhibit processive retrograde motility with faster velocities than the overall Rab5 population. Knockdown of Hook1 significantly reduced the motility of BDNF-signaling endosomes without affecting the motility of other organelles. In microfluidic chambers, Hook1 depletion resulted in a significant decrease in the flux and processivity of BDNF-Qdots along the mid-axon, an effect specific for Hook1 but not Hook3. Hook1 depletion inhibited BDNF trafficking to the soma and blocked downstream BDNF- and TrkB-dependent signaling to the nucleus. Together, these studies support a model in which differential association with cargo-specific effectors efficiently regulates dynein in neurons. Rockefeller University Press 2019-01-07 /pmc/articles/PMC6314548/ /pubmed/30373907 http://dx.doi.org/10.1083/jcb.201805016 Text en © 2018 Olenick et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Olenick, Mara A. Dominguez, Roberto Holzbaur, Erika L.F. Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title | Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title_full | Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title_fullStr | Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title_full_unstemmed | Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title_short | Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons |
title_sort | dynein activator hook1 is required for trafficking of bdnf-signaling endosomes in neurons |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314548/ https://www.ncbi.nlm.nih.gov/pubmed/30373907 http://dx.doi.org/10.1083/jcb.201805016 |
work_keys_str_mv | AT olenickmaraa dyneinactivatorhook1isrequiredfortraffickingofbdnfsignalingendosomesinneurons AT dominguezroberto dyneinactivatorhook1isrequiredfortraffickingofbdnfsignalingendosomesinneurons AT holzbaurerikalf dyneinactivatorhook1isrequiredfortraffickingofbdnfsignalingendosomesinneurons |