Cargando…

Improving ESD Protection Robustness Using SiGe Source/Drain Regions in Tunnel FET

Currently, a tunnel field-effect transistor (TFET) is being considered as a suitable electrostatic discharge (ESD) protection device in advanced technology. In addition, silicon-germanium (SiGe) engineering is shown to improve the performance of TFET-based ESD protection devices. In this paper, a ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhaonian, Yang, Yuan, Yu, Ningmei, Liou, Juin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316336/
https://www.ncbi.nlm.nih.gov/pubmed/30545073
http://dx.doi.org/10.3390/mi9120657
Descripción
Sumario:Currently, a tunnel field-effect transistor (TFET) is being considered as a suitable electrostatic discharge (ESD) protection device in advanced technology. In addition, silicon-germanium (SiGe) engineering is shown to improve the performance of TFET-based ESD protection devices. In this paper, a new TFET with SiGe source/drain (S/D) regions is proposed, and its ESD characteristics are evaluated using technology computer aided design (TCAD) simulations. Under a transmission line pulsing (TLP) stressing condition, the triggering voltage of the SiGe S/D TFET is reduced by 35% and the failure current is increased by 17% in comparison with the conventional Si S/D TFET. Physical insights relevant to the ESD enhancement of the SiGe S/D TFET are provided and discussed.