Cargando…

The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation

Mammalian DNMT1 is mainly responsible for maintenance DNA methylation that is critical in maintaining stem cell pluripotency and controlling lineage specification during early embryonic development. A number of studies have demonstrated that DNMT1 is an auto-inhibited enzyme and its enzymatic activi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Si, Qian, Chengmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316679/
https://www.ncbi.nlm.nih.gov/pubmed/30513966
http://dx.doi.org/10.3390/genes9120600
Descripción
Sumario:Mammalian DNMT1 is mainly responsible for maintenance DNA methylation that is critical in maintaining stem cell pluripotency and controlling lineage specification during early embryonic development. A number of studies have demonstrated that DNMT1 is an auto-inhibited enzyme and its enzymatic activity is allosterically regulated by a number of interacting partners. UHRF1 has previously been reported to regulate DNMT1 in multiple ways, including control of substrate specificity and the proper genome targeting. In this review, we discuss the recent advances in our understanding of the regulation of DNMT1 enzymatic activity by UHRF1 and highlight a number of unresolved questions.