Cargando…

Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression

Tolerance and associated hyperalgesia induced by long-term morphine administration substantially restrict the clinical use of morphine in pain treatment. Melatonin, a neurohormone released by the pineal gland, has been demonstrated to attenuate anti-nociceptive morphine tolerance. The present study...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Yu-Che, Tsai, Ru-Yin, Sung, Yen-Tseng, Chen, Ing-Jung, Tu, Tzu-Yi, Mao, Ya-Yuan, Wong, Chih-Shung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317689/
https://www.ncbi.nlm.nih.gov/pubmed/30569162
http://dx.doi.org/10.3892/ijmm.2018.4030
_version_ 1783384774617858048
author Cheng, Yu-Che
Tsai, Ru-Yin
Sung, Yen-Tseng
Chen, Ing-Jung
Tu, Tzu-Yi
Mao, Ya-Yuan
Wong, Chih-Shung
author_facet Cheng, Yu-Che
Tsai, Ru-Yin
Sung, Yen-Tseng
Chen, Ing-Jung
Tu, Tzu-Yi
Mao, Ya-Yuan
Wong, Chih-Shung
author_sort Cheng, Yu-Che
collection PubMed
description Tolerance and associated hyperalgesia induced by long-term morphine administration substantially restrict the clinical use of morphine in pain treatment. Melatonin, a neurohormone released by the pineal gland, has been demonstrated to attenuate anti-nociceptive morphine tolerance. The present study investigates differentially expressed genes in the process of morphine tolerance and altered gene expression subsequent to melatonin treatment in chronic morphine-infused ratspinal cords. Morphine tolerance was induced in male Wistar rats by intrathecal morphine infusion (the MO group). Melatonin (the MOMa group) was administered to overcome the effects derived by morphine. The mRNA collected from L5-S3 of the spinal cord was extracted and analysed by rat expression microarray. Principal component analysis and clustering analysis revealed that the overall gene profiles were different in morphine and melatonin treatments. Subsequent to Gene Ontology analysis, the biological processes of differentially expressed genes of MO and MOMa compared with the control group were constructed. Furthermore, a panel of genes exclusively expressed following melatonin treatment and another panel of genes with inverse expression between the MO and MOMa group were also established. Subsequent to PANTHER pathway analysis, a group of genes with inverse expression following melatonin administrated compared with morphine alone were identified. The expression levels of genes of interest were also confirmed using a reverse transcription-quantitative polymerase chain reaction. The gene panel that was constructed suggests a potential signaling pathway in morphine tolerance development and is valuable for investigating the mechanism of morphine tolerance and the regulatory gene profiles of melatonin treatment. These results may contribute to the discovery of potential drug targets in morphine tolerance treatments in the future.
format Online
Article
Text
id pubmed-6317689
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-63176892019-01-24 Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression Cheng, Yu-Che Tsai, Ru-Yin Sung, Yen-Tseng Chen, Ing-Jung Tu, Tzu-Yi Mao, Ya-Yuan Wong, Chih-Shung Int J Mol Med Articles Tolerance and associated hyperalgesia induced by long-term morphine administration substantially restrict the clinical use of morphine in pain treatment. Melatonin, a neurohormone released by the pineal gland, has been demonstrated to attenuate anti-nociceptive morphine tolerance. The present study investigates differentially expressed genes in the process of morphine tolerance and altered gene expression subsequent to melatonin treatment in chronic morphine-infused ratspinal cords. Morphine tolerance was induced in male Wistar rats by intrathecal morphine infusion (the MO group). Melatonin (the MOMa group) was administered to overcome the effects derived by morphine. The mRNA collected from L5-S3 of the spinal cord was extracted and analysed by rat expression microarray. Principal component analysis and clustering analysis revealed that the overall gene profiles were different in morphine and melatonin treatments. Subsequent to Gene Ontology analysis, the biological processes of differentially expressed genes of MO and MOMa compared with the control group were constructed. Furthermore, a panel of genes exclusively expressed following melatonin treatment and another panel of genes with inverse expression between the MO and MOMa group were also established. Subsequent to PANTHER pathway analysis, a group of genes with inverse expression following melatonin administrated compared with morphine alone were identified. The expression levels of genes of interest were also confirmed using a reverse transcription-quantitative polymerase chain reaction. The gene panel that was constructed suggests a potential signaling pathway in morphine tolerance development and is valuable for investigating the mechanism of morphine tolerance and the regulatory gene profiles of melatonin treatment. These results may contribute to the discovery of potential drug targets in morphine tolerance treatments in the future. D.A. Spandidos 2019-02 2018-12-18 /pmc/articles/PMC6317689/ /pubmed/30569162 http://dx.doi.org/10.3892/ijmm.2018.4030 Text en Copyright: © Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Cheng, Yu-Che
Tsai, Ru-Yin
Sung, Yen-Tseng
Chen, Ing-Jung
Tu, Tzu-Yi
Mao, Ya-Yuan
Wong, Chih-Shung
Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title_full Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title_fullStr Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title_full_unstemmed Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title_short Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression
title_sort melatonin regulation of transcription in the reversal of morphine tolerance: microarray analysis of differential gene expression
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317689/
https://www.ncbi.nlm.nih.gov/pubmed/30569162
http://dx.doi.org/10.3892/ijmm.2018.4030
work_keys_str_mv AT chengyuche melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT tsairuyin melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT sungyentseng melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT cheningjung melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT tutzuyi melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT maoyayuan melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression
AT wongchihshung melatoninregulationoftranscriptioninthereversalofmorphinetolerancemicroarrayanalysisofdifferentialgeneexpression