Cargando…

Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii

For a resolution of reducing carbon dioxide emission and increasing food production to respond to the growth of global population, production of biofuels from non-edible biomass is urgently required. Abundant orange wastes, such as peel and strained lees, are produced as by-product of orange juice,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomita, Hisao, Okazaki, Fumiyoshi, Tamaru, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318158/
https://www.ncbi.nlm.nih.gov/pubmed/30607514
http://dx.doi.org/10.1186/s13568-018-0728-7
Descripción
Sumario:For a resolution of reducing carbon dioxide emission and increasing food production to respond to the growth of global population, production of biofuels from non-edible biomass is urgently required. Abundant orange wastes, such as peel and strained lees, are produced as by-product of orange juice, which is available non-edible biomass. However, d-limonene included in citrus fruits often inhibits yeast growth and makes the ethanol fermentation difficult. This study demonstrated that isopropanol-butanol-ethanol fermentation ability of Clostridium beijerinckii and cellulosic biomass degrading ability of C. cellulovorans were cultivated under several concentrations of limonene. As a result, C. cellulovorans was able to grow even in the medium containing 0.05% limonene (v/v) and degraded 85% of total sugar from mandarin peel and strained lees without any pretreatments. More interestingly, C. beijerinckii produced 0.046 g butanol per 1 g of dried strained lees in the culture supernatant together with C. cellulovorans.