Cargando…

Synthesis and Evaluation of 3-Substituted-4-(quinoxalin-6-yl) Pyrazoles as TGF-β Type I Receptor Kinase Inhibitors

The transforming growth factor-β (TGF-β), in which overexpression has been associated with various diseases, has become an attractive molecular target for the treatment of cancers. Thirty-two quinoxaline-derivatives of 3-substituted-4-(quinoxalin-6-yl) pyrazoles 14a–d, 15a–d, 16a–d, 17a–d, 18a–d, 19...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Li-Min, Guo, Zhen, Xue, Yi-Jie, Min, Jun Zhe, Zhu, Wen-Jing, Li, Xiang-Yu, Piao, Hu-Ri, Jin, Cheng Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320941/
https://www.ncbi.nlm.nih.gov/pubmed/30572609
http://dx.doi.org/10.3390/molecules23123369
Descripción
Sumario:The transforming growth factor-β (TGF-β), in which overexpression has been associated with various diseases, has become an attractive molecular target for the treatment of cancers. Thirty-two quinoxaline-derivatives of 3-substituted-4-(quinoxalin-6-yl) pyrazoles 14a–d, 15a–d, 16a–d, 17a–d, 18a–d, 19a–d, 25a, 25b, 25d, 26a, 26b, 26d, 27b, and 27d were synthesized and evaluated for their activin TGF-β type I receptor kinase and p38α mitogen activated protein (MAP) kinase inhibitory activity in enzymatic assays. Among these compounds, the most active compound 19b inhibited TGF-β type I receptor kinase phosphorylation with an IC(50) value of 0.28 µM, with 98% inhibition at 10 µM. Compound 19b also had good selectivity index of >35 against p38α MAP kinase, with 9.0-fold more selective than clinical candidate, compound 3 (LY-2157299). A molecular docking study was performed to identify the mechanism of action of the synthesized compounds and their good binding interactions were observed. ADMET prediction of good active compounds showed that these ones possess good pharmacokinetics and drug-likeness behavior.