Cargando…

3D Cultures of Parkinson's Disease‐Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing

Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem cells carrying the LRRK2‐G2019S mutation, is optimized in 3D microfluidics. The automated i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolognin, Silvia, Fossépré, Marie, Qing, Xiaobing, Jarazo, Javier, Ščančar, Janez, Moreno, Edinson Lucumi, Nickels, Sarah L., Wasner, Kobi, Ouzren, Nassima, Walter, Jonas, Grünewald, Anne, Glaab, Enrico, Salamanca, Luis, Fleming, Ronan M. T., Antony, Paul M. A., Schwamborn, Jens C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325628/
https://www.ncbi.nlm.nih.gov/pubmed/30643711
http://dx.doi.org/10.1002/advs.201800927
Descripción
Sumario:Parkinson's disease (PD)‐specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient‐specific neurons, derived from induced pluripotent stem cells carrying the LRRK2‐G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease‐relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High‐content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2‐G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2‐G2019S‐dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2‐G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.