Cargando…
Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase
The CRISPR/Cas9 nickase mutant is less prone to off-target double-strand (ds)DNA breaks than wild-type Cas9 because to produce dsDNA cleavage it requires two guide RNAs to target the nickase to nearby opposing strands. Like wild-type Cas9 lesions, these staggered lesions are repaired by either non-h...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325892/ https://www.ncbi.nlm.nih.gov/pubmed/30504134 http://dx.doi.org/10.1534/g3.118.200758 |
Sumario: | The CRISPR/Cas9 nickase mutant is less prone to off-target double-strand (ds)DNA breaks than wild-type Cas9 because to produce dsDNA cleavage it requires two guide RNAs to target the nickase to nearby opposing strands. Like wild-type Cas9 lesions, these staggered lesions are repaired by either non-homologous end joining or, if a repair template is provided, by homologous recombination (HR). Here, we report very efficient (up to 100%) recovery of heterozygous insertions in Mus musculus produced by long (>300 nt), single-stranded DNA donor template-guided repair of paired-nickase lesions. |
---|