Cargando…
Non-H3 CDR template selection in antibody modeling through machine learning
Antibodies are proteins generated by the adaptive immune system to recognize and counteract a plethora of pathogens through specific binding. This adaptive binding is mediated by structural diversity in the six complementary determining region (CDR) loops (H1, H2, H3, L1, L2 and L3), which also make...
Autores principales: | Long, Xiyao, Jeliazkov, Jeliazko R., Gray, Jeffrey J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330961/ https://www.ncbi.nlm.nih.gov/pubmed/30648015 http://dx.doi.org/10.7717/peerj.6179 |
Ejemplares similares
-
Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification
por: Jeliazkov, Jeliazko R., et al.
Publicado: (2018) -
Disjoint combinations profiling (DCP): a new method for the prediction of antibody CDR conformation from sequence
por: Nikoloudis, Dimitris, et al.
Publicado: (2014) -
Robustification of RosettaAntibody and Rosetta SnugDock
por: Jeliazkov, Jeliazko R., et al.
Publicado: (2021) -
A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction
por: Pudjihartono, Nicholas, et al.
Publicado: (2022) -
Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques
por: Arceo-Vilas, Alba, et al.
Publicado: (2020)