Cargando…

Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1

The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER), one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguan...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahajan, Tushar R., Ytre-Arne, Mari Eknes, Strøm-Andersen, Pernille, Dalhus, Bjørn, Gundersen, Lise-Lotte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332111/
https://www.ncbi.nlm.nih.gov/pubmed/26364627
http://dx.doi.org/10.3390/molecules200915944
Descripción
Sumario:The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER), one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguanines. Thus we explored synthetic routes to 8-oxoguanines and examined these as OGG1 inhibitors. The best reaction sequence started from 6-chloroguanine and involved N-9 alkylation, C-8 bromination, and finally simultaneous hydrolysis of both halides. Bromination before N-alkylation should only be considered when the N-substituent is not compatible with bromination conditions. The 8-oxoguanines were found to be weak inhibitors of OGG1. 6-Chloro-8-oxopurines, byproducts in the hydrolysis of 2,6-halopurines, turned out to be slightly better inhibitors than the corresponding 8-oxoguanines.