Cargando…

Synthesis and Evaluation of a Rationally Designed Click-Based Library for G-Quadruplex Selective DNA Photocleavage

DNA containing repeating G-rich sequences can adopt higher-order structures known as G-quadruplexes (G4). These structures are believed to form within telomeres and the promoter regions of some genes, particularly in a number of proto-oncogenes, where they may play a role in regulating transcription...

Descripción completa

Detalles Bibliográficos
Autores principales: McBrayer, Dominic, Kerwin, Sean M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332505/
https://www.ncbi.nlm.nih.gov/pubmed/26378509
http://dx.doi.org/10.3390/molecules200916446
Descripción
Sumario:DNA containing repeating G-rich sequences can adopt higher-order structures known as G-quadruplexes (G4). These structures are believed to form within telomeres and the promoter regions of some genes, particularly in a number of proto-oncogenes, where they may play a role in regulating transcription. Alternatively, G4 DNA may act as a barrier to replication. To investigate these potential biological roles, probes that combine highly selective G4 DNA targeting with photocleavage activity can allow temporal detection of G4 DNA, providing opportunities to obtain novel insights about the biological roles of G4 DNA. We have designed, synthesized, and screened a small library of potential selective G-quadruplex DNA photocleavage agents incorporating the G-quadruplex targeting moiety of 360A with known photocleavage groups linked via “click” chemistry.