Cargando…

Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates

Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs) have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitor...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhihong, Shaw, Barbara Ramsay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332514/
https://www.ncbi.nlm.nih.gov/pubmed/26501247
http://dx.doi.org/10.3390/molecules201018808
_version_ 1783387367976992768
author Xu, Zhihong
Shaw, Barbara Ramsay
author_facet Xu, Zhihong
Shaw, Barbara Ramsay
author_sort Xu, Zhihong
collection PubMed
description Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs) have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs). However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T) 5′-α-P-borano-γ-P-N-l-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days) and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, is generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.
format Online
Article
Text
id pubmed-6332514
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63325142019-01-24 Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates Xu, Zhihong Shaw, Barbara Ramsay Molecules Article Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs) have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs). However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T) 5′-α-P-borano-γ-P-N-l-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days) and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, is generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides. MDPI 2015-10-16 /pmc/articles/PMC6332514/ /pubmed/26501247 http://dx.doi.org/10.3390/molecules201018808 Text en © 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xu, Zhihong
Shaw, Barbara Ramsay
Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title_full Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title_fullStr Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title_full_unstemmed Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title_short Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates
title_sort synthesis, hydrolysis, and protonation-promoted intramolecular reductive breakdown of potential nrtis: stavudine α-p-borano-γ-p-n-l-tryptophanyltriphosphates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332514/
https://www.ncbi.nlm.nih.gov/pubmed/26501247
http://dx.doi.org/10.3390/molecules201018808
work_keys_str_mv AT xuzhihong synthesishydrolysisandprotonationpromotedintramolecularreductivebreakdownofpotentialnrtisstavudineapboranogpnltryptophanyltriphosphates
AT shawbarbararamsay synthesishydrolysisandprotonationpromotedintramolecularreductivebreakdownofpotentialnrtisstavudineapboranogpnltryptophanyltriphosphates