Cargando…
Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia
The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, mon...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336839/ https://www.ncbi.nlm.nih.gov/pubmed/30655504 http://dx.doi.org/10.1038/s41398-018-0342-0 |
_version_ | 1783388128481902592 |
---|---|
author | Fullard, John F. Charney, Alexander W. Voloudakis, Georgios Uzilov, Andrew V. Haroutunian, Vahram Roussos, Panos |
author_facet | Fullard, John F. Charney, Alexander W. Voloudakis, Georgios Uzilov, Andrew V. Haroutunian, Vahram Roussos, Panos |
author_sort | Fullard, John F. |
collection | PubMed |
description | The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants—genetic changes that arise after fertilization rather than through germline inheritance—are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets. |
format | Online Article Text |
id | pubmed-6336839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63368392019-01-23 Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia Fullard, John F. Charney, Alexander W. Voloudakis, Georgios Uzilov, Andrew V. Haroutunian, Vahram Roussos, Panos Transl Psychiatry Article The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants—genetic changes that arise after fertilization rather than through germline inheritance—are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets. Nature Publishing Group UK 2019-01-17 /pmc/articles/PMC6336839/ /pubmed/30655504 http://dx.doi.org/10.1038/s41398-018-0342-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Fullard, John F. Charney, Alexander W. Voloudakis, Georgios Uzilov, Andrew V. Haroutunian, Vahram Roussos, Panos Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title | Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title_full | Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title_fullStr | Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title_full_unstemmed | Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title_short | Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
title_sort | assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336839/ https://www.ncbi.nlm.nih.gov/pubmed/30655504 http://dx.doi.org/10.1038/s41398-018-0342-0 |
work_keys_str_mv | AT fullardjohnf assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia AT charneyalexanderw assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia AT voloudakisgeorgios assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia AT uzilovandrewv assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia AT haroutunianvahram assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia AT roussospanos assessmentofsomaticsinglenucleotidevariationinbraintissueofcaseswithschizophrenia |