Cargando…

Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling

Controlling the microstructure homogeneity is crucial in achieving high quality tantalum (Ta) sputtering targets used in integrated circuit fabrication. Unluckily, traditional rolling easily generates a microstructure gradient along the thickness direction in Ta sheets. The deformation and recrystal...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Jialin, Liu, Shifeng, Yuan, Xiaoli, Liu, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337748/
https://www.ncbi.nlm.nih.gov/pubmed/30621074
http://dx.doi.org/10.3390/ma12010169
_version_ 1783388321654767616
author Zhu, Jialin
Liu, Shifeng
Yuan, Xiaoli
Liu, Qing
author_facet Zhu, Jialin
Liu, Shifeng
Yuan, Xiaoli
Liu, Qing
author_sort Zhu, Jialin
collection PubMed
description Controlling the microstructure homogeneity is crucial in achieving high quality tantalum (Ta) sputtering targets used in integrated circuit fabrication. Unluckily, traditional rolling easily generates a microstructure gradient along the thickness direction in Ta sheets. The deformation and recrystallization behavior of unidirectional and clock rolled Ta with an 87% strain were therefore systematically compared to investigate whether the change of strain-pass can effectively ameliorate the microstructure gradient along the thickness. Electron backscatter diffraction was used to analyze the misorientation characteristics of the deformed grains. A strong microstructure gradient exists in the unidirectional rolled (UR) sheets. Many microshear bands and well-defined microbands occurred in {111} deformed grains in the UR sheets, especially in the center region, while the grain fragmentation with {111} and {100} orientation in the clock rolled (CR) sheets was more homogenous along the thickness. The kernel average misorientation (KAM) and grain reference orientation deviation-hyper (GROD-Hyper) further confirmed these differences. X-ray line profile analysis (XLPA) indicated that the stored energy distribution was more inhomogeneous in the UR sheets. Schmid factor analysis suggested that the strain path changes due to clock rolling promoted the activation of multiple slip systems in {111} oriented grains. Upon static annealing, homogeneous nucleation combined with a slower grain growth rate resulted in finer and more uniform grain size for the CR sheet. In contrast, a strong recrystallization microstructure-gradient along the thickness formed in the UR sheets, which is attributed to the fact that the higher stored energy and more preferential nucleation sites led to faster recrystallization in the center region, as compared with the surface region. Thus, clock rolling can effectively improve the homogeneity of the through-thickness recrystallization microstructure of Ta sheets.
format Online
Article
Text
id pubmed-6337748
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63377482019-01-22 Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling Zhu, Jialin Liu, Shifeng Yuan, Xiaoli Liu, Qing Materials (Basel) Article Controlling the microstructure homogeneity is crucial in achieving high quality tantalum (Ta) sputtering targets used in integrated circuit fabrication. Unluckily, traditional rolling easily generates a microstructure gradient along the thickness direction in Ta sheets. The deformation and recrystallization behavior of unidirectional and clock rolled Ta with an 87% strain were therefore systematically compared to investigate whether the change of strain-pass can effectively ameliorate the microstructure gradient along the thickness. Electron backscatter diffraction was used to analyze the misorientation characteristics of the deformed grains. A strong microstructure gradient exists in the unidirectional rolled (UR) sheets. Many microshear bands and well-defined microbands occurred in {111} deformed grains in the UR sheets, especially in the center region, while the grain fragmentation with {111} and {100} orientation in the clock rolled (CR) sheets was more homogenous along the thickness. The kernel average misorientation (KAM) and grain reference orientation deviation-hyper (GROD-Hyper) further confirmed these differences. X-ray line profile analysis (XLPA) indicated that the stored energy distribution was more inhomogeneous in the UR sheets. Schmid factor analysis suggested that the strain path changes due to clock rolling promoted the activation of multiple slip systems in {111} oriented grains. Upon static annealing, homogeneous nucleation combined with a slower grain growth rate resulted in finer and more uniform grain size for the CR sheet. In contrast, a strong recrystallization microstructure-gradient along the thickness formed in the UR sheets, which is attributed to the fact that the higher stored energy and more preferential nucleation sites led to faster recrystallization in the center region, as compared with the surface region. Thus, clock rolling can effectively improve the homogeneity of the through-thickness recrystallization microstructure of Ta sheets. MDPI 2019-01-07 /pmc/articles/PMC6337748/ /pubmed/30621074 http://dx.doi.org/10.3390/ma12010169 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhu, Jialin
Liu, Shifeng
Yuan, Xiaoli
Liu, Qing
Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title_full Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title_fullStr Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title_full_unstemmed Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title_short Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling
title_sort comparing the through-thickness gradient of the deformed and recrystallized microstructure in tantalum with unidirectional and clock rolling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337748/
https://www.ncbi.nlm.nih.gov/pubmed/30621074
http://dx.doi.org/10.3390/ma12010169
work_keys_str_mv AT zhujialin comparingthethroughthicknessgradientofthedeformedandrecrystallizedmicrostructureintantalumwithunidirectionalandclockrolling
AT liushifeng comparingthethroughthicknessgradientofthedeformedandrecrystallizedmicrostructureintantalumwithunidirectionalandclockrolling
AT yuanxiaoli comparingthethroughthicknessgradientofthedeformedandrecrystallizedmicrostructureintantalumwithunidirectionalandclockrolling
AT liuqing comparingthethroughthicknessgradientofthedeformedandrecrystallizedmicrostructureintantalumwithunidirectionalandclockrolling