Cargando…

Have I Seen This Place Before? A Fast and Robust Loop Detection and Correction Method for 3D Lidar SLAM

In this paper, we present a complete loop detection and correction system developed for data originating from lidar scanners. Regarding detection, we propose a combination of a global point cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective way. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Vlaminck, Michiel, Luong, Hiep, Philips, Wilfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339070/
https://www.ncbi.nlm.nih.gov/pubmed/30577652
http://dx.doi.org/10.3390/s19010023
Descripción
Sumario:In this paper, we present a complete loop detection and correction system developed for data originating from lidar scanners. Regarding detection, we propose a combination of a global point cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective way. The registration method can deal with point clouds that are largely deviating in orientation while improving the efficiency over existing techniques. In addition, we accelerated the computation of the global point cloud matcher by a factor of 2–4, exploiting the GPU to its maximum. Experiments demonstrated that our combined approach more reliably detects loops in lidar data compared to other point cloud matchers as it leads to better precision–recall trade-offs: for nearly 100% recall, we gain up to 7% in precision. Finally, we present a novel loop correction algorithm that leads to an improvement by a factor of 2 on the average and median pose error, while at the same time only requires a handful of seconds to complete.