Cargando…
Field-free Magnetization Switching by Utilizing the Spin Hall Effect and Interlayer Exchange Coupling of Iridium
Magnetization switching by spin-orbit torque (SOT) via spin Hall effect represents as a competitive alternative to that by spin-transfer torque (STT) used for magnetoresistive random access memory (MRAM), as it doesn’t require high-density current to go through the tunnel junction. For perpendicular...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344501/ https://www.ncbi.nlm.nih.gov/pubmed/30674984 http://dx.doi.org/10.1038/s41598-018-37586-4 |
Sumario: | Magnetization switching by spin-orbit torque (SOT) via spin Hall effect represents as a competitive alternative to that by spin-transfer torque (STT) used for magnetoresistive random access memory (MRAM), as it doesn’t require high-density current to go through the tunnel junction. For perpendicular MRAM, however, SOT driven switching of the free layer requires an external in-plane field, which poses limitation for viability in practical applications. Here we demonstrate field-free magnetization switching of a perpendicular magnet by utilizing an Iridium (Ir) layer. The Ir layer not only provides SOTs via spin Hall effect, but also induce interlayer exchange coupling with an in-plane magnetic layer that eliminates the need for the external field. Such dual functions of the Ir layer allows future build-up of magnetoresistive stacks for memory and logic applications. Experimental observations show that the SOT driven field-free magnetization reversal is characterized as domain nucleation and expansion. Micromagnetic modeling is carried out to provide in-depth understanding of the perpendicular magnetization reversal process in the presence of an in-plane exchange coupling field. |
---|