Cargando…

Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration

Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization c...

Descripción completa

Detalles Bibliográficos
Autores principales: Prahl, Louis S., Bangasser, Patrick F., Stopfer, Lauren E., Hemmat, Mahya, White, Forest M., Rosenfeld, Steven S., Odde, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345402/
https://www.ncbi.nlm.nih.gov/pubmed/30485822
http://dx.doi.org/10.1016/j.celrep.2018.10.101
_version_ 1783389561654607872
author Prahl, Louis S.
Bangasser, Patrick F.
Stopfer, Lauren E.
Hemmat, Mahya
White, Forest M.
Rosenfeld, Steven S.
Odde, David J.
author_facet Prahl, Louis S.
Bangasser, Patrick F.
Stopfer, Lauren E.
Hemmat, Mahya
White, Forest M.
Rosenfeld, Steven S.
Odde, David J.
author_sort Prahl, Louis S.
collection PubMed
description Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration.
format Online
Article
Text
id pubmed-6345402
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-63454022019-01-24 Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration Prahl, Louis S. Bangasser, Patrick F. Stopfer, Lauren E. Hemmat, Mahya White, Forest M. Rosenfeld, Steven S. Odde, David J. Cell Rep Article Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration. 2018-11-27 /pmc/articles/PMC6345402/ /pubmed/30485822 http://dx.doi.org/10.1016/j.celrep.2018.10.101 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prahl, Louis S.
Bangasser, Patrick F.
Stopfer, Lauren E.
Hemmat, Mahya
White, Forest M.
Rosenfeld, Steven S.
Odde, David J.
Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title_full Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title_fullStr Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title_full_unstemmed Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title_short Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
title_sort microtubule-based control of motor-clutch system mechanics in glioma cell migration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345402/
https://www.ncbi.nlm.nih.gov/pubmed/30485822
http://dx.doi.org/10.1016/j.celrep.2018.10.101
work_keys_str_mv AT prahllouiss microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT bangasserpatrickf microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT stopferlaurene microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT hemmatmahya microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT whiteforestm microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT rosenfeldstevens microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration
AT oddedavidj microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration