Cargando…
Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration
Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345402/ https://www.ncbi.nlm.nih.gov/pubmed/30485822 http://dx.doi.org/10.1016/j.celrep.2018.10.101 |
_version_ | 1783389561654607872 |
---|---|
author | Prahl, Louis S. Bangasser, Patrick F. Stopfer, Lauren E. Hemmat, Mahya White, Forest M. Rosenfeld, Steven S. Odde, David J. |
author_facet | Prahl, Louis S. Bangasser, Patrick F. Stopfer, Lauren E. Hemmat, Mahya White, Forest M. Rosenfeld, Steven S. Odde, David J. |
author_sort | Prahl, Louis S. |
collection | PubMed |
description | Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration. |
format | Online Article Text |
id | pubmed-6345402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63454022019-01-24 Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration Prahl, Louis S. Bangasser, Patrick F. Stopfer, Lauren E. Hemmat, Mahya White, Forest M. Rosenfeld, Steven S. Odde, David J. Cell Rep Article Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration. 2018-11-27 /pmc/articles/PMC6345402/ /pubmed/30485822 http://dx.doi.org/10.1016/j.celrep.2018.10.101 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Prahl, Louis S. Bangasser, Patrick F. Stopfer, Lauren E. Hemmat, Mahya White, Forest M. Rosenfeld, Steven S. Odde, David J. Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title | Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title_full | Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title_fullStr | Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title_full_unstemmed | Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title_short | Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration |
title_sort | microtubule-based control of motor-clutch system mechanics in glioma cell migration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345402/ https://www.ncbi.nlm.nih.gov/pubmed/30485822 http://dx.doi.org/10.1016/j.celrep.2018.10.101 |
work_keys_str_mv | AT prahllouiss microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT bangasserpatrickf microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT stopferlaurene microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT hemmatmahya microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT whiteforestm microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT rosenfeldstevens microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration AT oddedavidj microtubulebasedcontrolofmotorclutchsystemmechanicsingliomacellmigration |