Cargando…

A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death

The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epit...

Descripción completa

Detalles Bibliográficos
Autores principales: Murschhauser, Alexandra, Röttgermann, Peter J. F., Woschée, Daniel, Ober, Martina F., Yan, Yan, Dawson, Kenneth A., Rädler, Joachim O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345847/
https://www.ncbi.nlm.nih.gov/pubmed/30701200
http://dx.doi.org/10.1038/s42003-019-0282-0
_version_ 1783389640030420992
author Murschhauser, Alexandra
Röttgermann, Peter J. F.
Woschée, Daniel
Ober, Martina F.
Yan, Yan
Dawson, Kenneth A.
Rädler, Joachim O.
author_facet Murschhauser, Alexandra
Röttgermann, Peter J. F.
Woschée, Daniel
Ober, Martina F.
Yan, Yan
Dawson, Kenneth A.
Rädler, Joachim O.
author_sort Murschhauser, Alexandra
collection PubMed
description The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH(2) nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL(−1)) for both cell lines, while at a higher dose (100 µg mL(−1)) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways.
format Online
Article
Text
id pubmed-6345847
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63458472019-01-30 A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death Murschhauser, Alexandra Röttgermann, Peter J. F. Woschée, Daniel Ober, Martina F. Yan, Yan Dawson, Kenneth A. Rädler, Joachim O. Commun Biol Article The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH(2) nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL(−1)) for both cell lines, while at a higher dose (100 µg mL(−1)) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways. Nature Publishing Group UK 2019-01-24 /pmc/articles/PMC6345847/ /pubmed/30701200 http://dx.doi.org/10.1038/s42003-019-0282-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Murschhauser, Alexandra
Röttgermann, Peter J. F.
Woschée, Daniel
Ober, Martina F.
Yan, Yan
Dawson, Kenneth A.
Rädler, Joachim O.
A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title_full A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title_fullStr A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title_full_unstemmed A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title_short A high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
title_sort high-throughput microscopy method for single-cell analysis of event-time correlations in nanoparticle-induced cell death
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345847/
https://www.ncbi.nlm.nih.gov/pubmed/30701200
http://dx.doi.org/10.1038/s42003-019-0282-0
work_keys_str_mv AT murschhauseralexandra ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT rottgermannpeterjf ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT woscheedaniel ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT obermartinaf ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT yanyan ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT dawsonkennetha ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT radlerjoachimo ahighthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT murschhauseralexandra highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT rottgermannpeterjf highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT woscheedaniel highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT obermartinaf highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT yanyan highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT dawsonkennetha highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath
AT radlerjoachimo highthroughputmicroscopymethodforsinglecellanalysisofeventtimecorrelationsinnanoparticleinducedcelldeath