Cargando…
Organic-Inorganic Solid-State Hybridization with High-Strength and Anti-Hydrolysis Interface
Organic-inorganic material hybridization at the solid-state level is indispensable for the integration of IoT applications, but still remains a challenging issue. Existing bonding strategies in the field of electronic packaging tend to employ vacuum or ultrahigh temperature; however, these can cause...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345999/ https://www.ncbi.nlm.nih.gov/pubmed/30679603 http://dx.doi.org/10.1038/s41598-018-37052-1 |
Sumario: | Organic-inorganic material hybridization at the solid-state level is indispensable for the integration of IoT applications, but still remains a challenging issue. Existing bonding strategies in the field of electronic packaging tend to employ vacuum or ultrahigh temperature; however, these can cause process complications and material deterioration. Here we report an easy-to-tune method to achieve hybrid bonding at the solid-state level and under the ambient atmosphere. Vacuum-ultraviolet (VUV)-induced reorganization with ethanol was used to develop hydroxyl-carrying alkyl chains through coordinatively-bonded carboxylate onto aluminum, whereas numerous hydroxyl-carrying alkyls were created on polyimide. The triggering of dehydration through these hydroxyls by merely heating at 150 °C for a few minutes produced robust organic-inorganic reticulated complexes within the aluminum/polyimide interface. The as-bonded aluminum/polyimide interface possessed an superior fracture energy of (2.40 ± 0.36) × 10(3) (J/m(2)) compared with aluminum and polyimide matrices themselves, which was mainly attributed to crack deflection due to the nano-grains of inorganic-organic reticulated complexes. The interfacial adhesion was successfully kept after humidity test, which was contributed by those anti-hydrolytic carboxylates. To the best of our knowledge, for the first time organic-inorganic bonding at the solid-state level was achieved using the ethanol-assisted VUV (E-VUV) process, a strategy which should be applicable to a diversity of plastics and metals with native oxides. |
---|