Cargando…
Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
Aggregation of amyloidogenic peptides could cause the onset and progression of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These amyloidogenic peptides can coordinate to metal ions, including Zn(ii), which can subsequently affect the peptides' aggr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349019/ https://www.ncbi.nlm.nih.gov/pubmed/30774894 http://dx.doi.org/10.1039/c8sc04943b |
_version_ | 1783390212946132992 |
---|---|
author | Lee, Hyuck Jin Lee, Young Geun Kang, Juhye Yang, Seung Hyun Kim, Ju Hwan Ghisaidoobe, Amar B. T. Kang, Hyo Jin Lee, Sang-Rae Lim, Mi Hee Chung, Sang J. |
author_facet | Lee, Hyuck Jin Lee, Young Geun Kang, Juhye Yang, Seung Hyun Kim, Ju Hwan Ghisaidoobe, Amar B. T. Kang, Hyo Jin Lee, Sang-Rae Lim, Mi Hee Chung, Sang J. |
author_sort | Lee, Hyuck Jin |
collection | PubMed |
description | Aggregation of amyloidogenic peptides could cause the onset and progression of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These amyloidogenic peptides can coordinate to metal ions, including Zn(ii), which can subsequently affect the peptides' aggregation and toxicity, leading to neurodegeneration. Unfortunately, the detection of metal–amyloidogenic peptide complexation has been very challenging. Herein, we report the development and utilization of a probe (A-1) capable of monitoring metal–amyloid-β (Aβ) complexation based on Förster resonance energy transfer (FRET). Our probe, A-1, is composed of Aβ(1–21) grafted with a pair of FRET donor and acceptor capable of providing a FRET signal upon Zn(ii) binding even at nanomolar concentrations. The FRET intensity of A-1 increases upon Zn(ii) binding and decreases when Zn(ii)-bound A-1 aggregates. Moreover, as the FRET intensity of Zn(ii)-added A-1 is drastically changed when their interaction is disrupted, A-1 can be used for screening a chemical library to determine effective inhibitors against metal–Aβ interaction. Eight natural products (out of 145 compounds; >80% inhibition) were identified as such inhibitors in vitro, and six of them could reduce Zn(ii)–Aβ-induced toxicity in living cells, suggesting structural moieties useful for inhibitor design. Overall, we demonstrate the design of a FRET-based probe for investigating metal–amyloidogenic peptide complexation as well as the feasibility of screening inhibitors against metal-bound amyloidogenic peptides, providing effective and efficient methods for understanding their pathology and finding therapeutic candidates against neurodegenerative disorders. |
format | Online Article Text |
id | pubmed-6349019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63490192019-02-15 Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening Lee, Hyuck Jin Lee, Young Geun Kang, Juhye Yang, Seung Hyun Kim, Ju Hwan Ghisaidoobe, Amar B. T. Kang, Hyo Jin Lee, Sang-Rae Lim, Mi Hee Chung, Sang J. Chem Sci Chemistry Aggregation of amyloidogenic peptides could cause the onset and progression of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These amyloidogenic peptides can coordinate to metal ions, including Zn(ii), which can subsequently affect the peptides' aggregation and toxicity, leading to neurodegeneration. Unfortunately, the detection of metal–amyloidogenic peptide complexation has been very challenging. Herein, we report the development and utilization of a probe (A-1) capable of monitoring metal–amyloid-β (Aβ) complexation based on Förster resonance energy transfer (FRET). Our probe, A-1, is composed of Aβ(1–21) grafted with a pair of FRET donor and acceptor capable of providing a FRET signal upon Zn(ii) binding even at nanomolar concentrations. The FRET intensity of A-1 increases upon Zn(ii) binding and decreases when Zn(ii)-bound A-1 aggregates. Moreover, as the FRET intensity of Zn(ii)-added A-1 is drastically changed when their interaction is disrupted, A-1 can be used for screening a chemical library to determine effective inhibitors against metal–Aβ interaction. Eight natural products (out of 145 compounds; >80% inhibition) were identified as such inhibitors in vitro, and six of them could reduce Zn(ii)–Aβ-induced toxicity in living cells, suggesting structural moieties useful for inhibitor design. Overall, we demonstrate the design of a FRET-based probe for investigating metal–amyloidogenic peptide complexation as well as the feasibility of screening inhibitors against metal-bound amyloidogenic peptides, providing effective and efficient methods for understanding their pathology and finding therapeutic candidates against neurodegenerative disorders. Royal Society of Chemistry 2018-12-06 /pmc/articles/PMC6349019/ /pubmed/30774894 http://dx.doi.org/10.1039/c8sc04943b Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Lee, Hyuck Jin Lee, Young Geun Kang, Juhye Yang, Seung Hyun Kim, Ju Hwan Ghisaidoobe, Amar B. T. Kang, Hyo Jin Lee, Sang-Rae Lim, Mi Hee Chung, Sang J. Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening |
title | Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
|
title_full | Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
|
title_fullStr | Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
|
title_full_unstemmed | Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
|
title_short | Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening
|
title_sort | monitoring metal–amyloid-β complexation by a fret-based probe: design, detection, and inhibitor screening |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349019/ https://www.ncbi.nlm.nih.gov/pubmed/30774894 http://dx.doi.org/10.1039/c8sc04943b |
work_keys_str_mv | AT leehyuckjin monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT leeyounggeun monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT kangjuhye monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT yangseunghyun monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT kimjuhwan monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT ghisaidoobeamarbt monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT kanghyojin monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT leesangrae monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT limmihee monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening AT chungsangj monitoringmetalamyloidbcomplexationbyafretbasedprobedesigndetectionandinhibitorscreening |