Cargando…

Significant improvement of reverse leakage current characteristics of Si-based homoepitaxial InGaN/GaN blue light emitting diodes

The nature of reverse leakage current characteristics in InGaN/GaN blue light emitting diodes (LEDs) on freestanding GaN crystals detached from a Si substrate is investigated for the first time, using temperature-dependent current-voltage (T-I-V) measurement. It is found that the Si-based homoepitax...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Moonsang, Lee, Hyun Uk, Song, Keun Man, Kim, Jaekyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353897/
https://www.ncbi.nlm.nih.gov/pubmed/30700809
http://dx.doi.org/10.1038/s41598-019-38664-x
Descripción
Sumario:The nature of reverse leakage current characteristics in InGaN/GaN blue light emitting diodes (LEDs) on freestanding GaN crystals detached from a Si substrate is investigated for the first time, using temperature-dependent current-voltage (T-I-V) measurement. It is found that the Si-based homoepitaxial InGaN/GaN LEDs exhibit a significant suppression of the reverse leakage current without any additional processes. Their conduction mechanism can be divided into variable-range hopping and nearest neighbor hopping (NNH) around 360 K, which is enhanced by Poole-Frenkel emission. The analysis of T-I-V curves of the homoepitaxial LEDs yields an activation energy of carriers of 35 meV at −10 V, about 50% higher than that of the conventional ones (E(a) = 21 meV at −10 V). This suggests that our homoepitaxial InGaN/GaN LEDs bears the high activation energy as well as low threading dislocation density (about 1 × 10(6)/cm(2)), effectively suppressing the reverse leakage current. We expect that this study will shed a light on the high reliability and carrier tunneling characteristics of the homoepitaxial InGaN/GaN blue LEDs produced from a Si substrate and also envision a promising future for their successful adoption by LED community via cost-effective homoepitaxial fabrication of LEDs.