Cargando…
SDVL: Efficient and Accurate Semi-Direct Visual Localization
Visual Simultaneous Localization and Mapping (SLAM) approaches have achieved a major breakthrough in recent years. This paper presents a new monocular visual odometry algorithm able to localize in 3D a robot or a camera inside an unknown environment in real time, even on slow processors such as thos...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358853/ https://www.ncbi.nlm.nih.gov/pubmed/30646504 http://dx.doi.org/10.3390/s19020302 |
Sumario: | Visual Simultaneous Localization and Mapping (SLAM) approaches have achieved a major breakthrough in recent years. This paper presents a new monocular visual odometry algorithm able to localize in 3D a robot or a camera inside an unknown environment in real time, even on slow processors such as those used in unmanned aerial vehicles (UAVs) or cell phones. The so-called semi-direct visual localization (SDVL) approach is focused on localization accuracy and uses semi-direct methods to increase feature-matching efficiency. It uses inverse-depth 3D point parameterization. The tracking thread includes a motion model, direct image alignment, and optimized feature matching. Additionally, an outlier rejection mechanism (ORM) has been implemented to rule out misplaced features, improving accuracy especially in partially dynamic environments. A relocalization module is also included but keeping the real-time operation. The mapping thread performs an automatic map initialization with homography, a sampled integration of new points and a selective map optimization. The proposed algorithm was experimentally tested with international datasets and compared to state-of-the-art algorithms. |
---|