Cargando…
Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates
ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358874/ https://www.ncbi.nlm.nih.gov/pubmed/30641875 http://dx.doi.org/10.3390/ijms20020268 |
_version_ | 1783392090038730752 |
---|---|
author | Gupta, Pranav Gao, Hai-Ling Ashar, Yunali V. Karadkhelkar, Nishant M. Yoganathan, Sabesan Chen, Zhe-Sheng |
author_facet | Gupta, Pranav Gao, Hai-Ling Ashar, Yunali V. Karadkhelkar, Nishant M. Yoganathan, Sabesan Chen, Zhe-Sheng |
author_sort | Gupta, Pranav |
collection | PubMed |
description | ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentration of chemotherapeutic drugs. Here, we evaluated ciprofloxacin for its ability to reverse MDR caused by the overexpression of ABCB1. Cytotoxicity of ciprofloxacin was determined by the MTT assay. The chemosensitizing effects of ciprofloxacin were determined in combination with ABCB1 substrates. The intracellular accumulation and efflux of ABCB1 substrates was measured by a scintillation counter, and protein expression was determined by the Western blotting. Vanadate-sensitive ATPase assay was performed to determine the effect of ciprofloxacin on the ATPase activity of ABCB1, and docking analysis was done to determine the interaction of ciprofloxacin with ABCB1. Ciprofloxacin significantly potentiated the cytotoxic effects of ABCB1 substrates in ABCB1-overexpressing cells. Furthermore, ciprofloxacin increased the intracellular accumulation and decreased the efflux of [(3)H]-paclitaxel without altering the expression of ABCB1. Ciprofloxacin stimulated the ATPase activity of ABCB1 in a concentration-dependent manner. Our findings showed that ciprofloxacin potently inhibits the ABCB1 efflux function and it has potential to be developed as a combination anticancer therapy. |
format | Online Article Text |
id | pubmed-6358874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63588742019-02-06 Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates Gupta, Pranav Gao, Hai-Ling Ashar, Yunali V. Karadkhelkar, Nishant M. Yoganathan, Sabesan Chen, Zhe-Sheng Int J Mol Sci Article ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentration of chemotherapeutic drugs. Here, we evaluated ciprofloxacin for its ability to reverse MDR caused by the overexpression of ABCB1. Cytotoxicity of ciprofloxacin was determined by the MTT assay. The chemosensitizing effects of ciprofloxacin were determined in combination with ABCB1 substrates. The intracellular accumulation and efflux of ABCB1 substrates was measured by a scintillation counter, and protein expression was determined by the Western blotting. Vanadate-sensitive ATPase assay was performed to determine the effect of ciprofloxacin on the ATPase activity of ABCB1, and docking analysis was done to determine the interaction of ciprofloxacin with ABCB1. Ciprofloxacin significantly potentiated the cytotoxic effects of ABCB1 substrates in ABCB1-overexpressing cells. Furthermore, ciprofloxacin increased the intracellular accumulation and decreased the efflux of [(3)H]-paclitaxel without altering the expression of ABCB1. Ciprofloxacin stimulated the ATPase activity of ABCB1 in a concentration-dependent manner. Our findings showed that ciprofloxacin potently inhibits the ABCB1 efflux function and it has potential to be developed as a combination anticancer therapy. MDPI 2019-01-11 /pmc/articles/PMC6358874/ /pubmed/30641875 http://dx.doi.org/10.3390/ijms20020268 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gupta, Pranav Gao, Hai-Ling Ashar, Yunali V. Karadkhelkar, Nishant M. Yoganathan, Sabesan Chen, Zhe-Sheng Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title | Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title_full | Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title_fullStr | Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title_full_unstemmed | Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title_short | Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates |
title_sort | ciprofloxacin enhances the chemosensitivity of cancer cells to abcb1 substrates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358874/ https://www.ncbi.nlm.nih.gov/pubmed/30641875 http://dx.doi.org/10.3390/ijms20020268 |
work_keys_str_mv | AT guptapranav ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates AT gaohailing ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates AT asharyunaliv ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates AT karadkhelkarnishantm ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates AT yoganathansabesan ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates AT chenzhesheng ciprofloxacinenhancesthechemosensitivityofcancercellstoabcb1substrates |