Cargando…
Infrared-Inertial Navigation for Commercial Aircraft Precision Landing in Low Visibility and GPS-Denied Environments
This paper proposes a novel infrared-inertial navigation method for the precise landing of commercial aircraft in low visibility and Global Position System (GPS)-denied environments. Within a Square-root Unscented Kalman Filter (SR_UKF), inertial measurement unit (IMU) data, forward-looking infrared...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359318/ https://www.ncbi.nlm.nih.gov/pubmed/30669520 http://dx.doi.org/10.3390/s19020408 |
Sumario: | This paper proposes a novel infrared-inertial navigation method for the precise landing of commercial aircraft in low visibility and Global Position System (GPS)-denied environments. Within a Square-root Unscented Kalman Filter (SR_UKF), inertial measurement unit (IMU) data, forward-looking infrared (FLIR) images and airport geo-information are integrated to estimate the position, velocity and attitude of the aircraft during landing. Homography between the synthetic image and the real image which implicates the camera pose deviations is created as vision measurement. To accurately extract real runway features, the current results of runway detection are used as the prior knowledge for the next frame detection. To avoid possible homography decomposition solutions, it is directly converted to a vector and fed to the SR_UKF. Moreover, the proposed navigation system is proven to be observable by nonlinear observability analysis. Last but not least, a general aircraft was elaborately equipped with vision and inertial sensors to collect flight data for algorithm verification. The experimental results have demonstrated that the proposed method could be used for the precise landing of commercial aircraft in low visibility and GPS-denied environments. |
---|