Cargando…

Label-free Quantitative Analysis of Protein Expression Alterations in miR-26a-Knockout HeLa Cells using SWATH-MS Technology

MicroRNAs (miRNAs) bind to the 3ʹ-untranslated region of target mRNAs in a sequence-specific manner and subsequently repress gene translation. Human miR-26a has been studied extensively, but the target transcripts are far from complete. We first employed the CRISPR-Cas9 system to generate an miR-26a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Hexiao, Li, Li, Teng, Zhaowei, Meng, Tianqing, Kong, Xiangbin, Hu, Yan, Zhu, Yun, Ma, Lixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362012/
https://www.ncbi.nlm.nih.gov/pubmed/30718521
http://dx.doi.org/10.1038/s41598-018-34904-8
Descripción
Sumario:MicroRNAs (miRNAs) bind to the 3ʹ-untranslated region of target mRNAs in a sequence-specific manner and subsequently repress gene translation. Human miR-26a has been studied extensively, but the target transcripts are far from complete. We first employed the CRISPR-Cas9 system to generate an miR-26a-knockout line in human cervical cancer HeLa cells. The miR26a-knockout line showed increased cell growth and altered proliferation. Proteomics technology of sequential window acquisition of all theoretical mass spectra (SWATH-MS) was utilized to compare the protein abundance between the wild-type and the knockout lines, with an attempt to identify transcripts whose translation was influenced by miR-26a. Functional classification of the proteins with significant changes revealed their function in stress response, proliferation, localization, development, signaling, etc. Several proteins in the cell cycle/proliferation signaling pathway were chosen to be validated by western blot and parallel reaction monitoring (PRM). The satisfactory consistency among the three approaches indicated the reliability of the SWATH-MS quantification. Among the computationally predicted targets, a subset of the targets was directly regulated by miR-26a, as demonstrated by luciferase assays and Western blotting. This study creates an inventory of miR-26a-targeted transcripts in HeLa cells and provides fundamental knowledge to further explore the functions of miR-26a in human cancer.