Cargando…
Epilepsy-associated mutations in the voltage sensor of KCNQ3 affect voltage dependence of channel opening
One of the major factors known to cause neuronal hyperexcitability is malfunction of the potassium channels formed by KCNQ2 and KCNQ3. These channel subunits underlie the M current, which regulates neuronal excitability. Here, I investigate the molecular mechanisms by which epilepsy-associated mutat...
Autor principal: | Barro-Soria, Rene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363412/ https://www.ncbi.nlm.nih.gov/pubmed/30578330 http://dx.doi.org/10.1085/jgp.201812221 |
Ejemplares similares
-
KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps
por: Barro-Soria, Rene, et al.
Publicado: (2014) -
The Role of S4 Charges in Voltage-dependent and Voltage-independent KCNQ1 Potassium Channel Complexes
por: Panaghie, Gianina, et al.
Publicado: (2007) -
Pore- and voltage sensor–targeted KCNQ openers have distinct state-dependent actions
por: Wang, Caroline K., et al.
Publicado: (2018) -
The Voltage-Sensor S4 Rises to the Occasion in KCNQ2 Channel Activation
por: Stafstrom, Carl E.
Publicado: (2022) -
KCNE Peptides Differently Affect Voltage Sensor Equilibrium and Equilibration Rates in KCNQ1 K(+) Channels
por: Rocheleau, Jessica M., et al.
Publicado: (2008)