Cargando…
e-Sweet: A Machine-Learning Based Platform for the Prediction of Sweetener and Its Relative Sweetness
Artificial sweeteners (AS) can elicit the strong sweet sensation with the low or zero calorie, and are widely used to replace the nutritive sugar in the food and beverage industry. However, the safety issue of current AS is still controversial. Thus, it is imperative to develop more safe and potent...
Autores principales: | Zheng, Suqing, Chang, Wenping, Xu, Wenxin, Xu, Yong, Lin, Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363693/ https://www.ncbi.nlm.nih.gov/pubmed/30761295 http://dx.doi.org/10.3389/fchem.2019.00035 |
Ejemplares similares
-
Artificial sweeteners are not sweet to the gut microbiome
por: Sun, Jun
Publicado: (2014) -
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
por: Zheng, Suqing, et al.
Publicado: (2018) -
Relationships between the response of the sweet taste receptor, salivation toward sweeteners, and sweetness intensity
por: Kusakabe, Yuko, et al.
Publicado: (2020) -
Recent progress in the use of diaziridine-based sweetener derivatives to elucidate the chemoreception mechanism of the sweet taste receptor
por: Hashimoto, Makoto, et al.
Publicado: (2021) -
BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules
por: Tuwani, Rudraksh, et al.
Publicado: (2019)