Cargando…

Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy

Epitaxial growth of atomically thin two-dimensional crystals such as transition metal dichalcogenides remains challenging, especially for producing large-size transition metal dichalcogenides bilayer crystals featuring high density of states, carrier mobility and stability at room temperature. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiumei, Nan, Haiyan, Xiao, Shaoqing, Wan, Xi, Gu, Xiaofeng, Du, Aijun, Ni, Zhenhua, Ostrikov, Kostya (Ken)
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363754/
https://www.ncbi.nlm.nih.gov/pubmed/30723204
http://dx.doi.org/10.1038/s41467-019-08468-8
_version_ 1783393165637582848
author Zhang, Xiumei
Nan, Haiyan
Xiao, Shaoqing
Wan, Xi
Gu, Xiaofeng
Du, Aijun
Ni, Zhenhua
Ostrikov, Kostya (Ken)
author_facet Zhang, Xiumei
Nan, Haiyan
Xiao, Shaoqing
Wan, Xi
Gu, Xiaofeng
Du, Aijun
Ni, Zhenhua
Ostrikov, Kostya (Ken)
author_sort Zhang, Xiumei
collection PubMed
description Epitaxial growth of atomically thin two-dimensional crystals such as transition metal dichalcogenides remains challenging, especially for producing large-size transition metal dichalcogenides bilayer crystals featuring high density of states, carrier mobility and stability at room temperature. Here we achieve in epitaxial growth of the second monolayer from the first monolayer by reverse-flow chemical vapor epitaxy and produce high-quality, large-size transition metal dichalcogenides bilayer crystals with high yield, control, and reliability. Customized temperature profiles and reverse gas flow help activate the first layer without introducing new nucleation centers leading to near-defect-free epitaxial growth of the second layer from the existing nucleation centers. A series of bilayer crystals including MoS(2) and WS(2), ternary Mo(1−x)W(x)S(2) and quaternary Mo(1−x)W(x)S(2(1−y))Se(2y) are synthesized with variable structural configurations and tunable electronic and optical properties. The robust, potentially universal approach for the synthesis of large-size transition metal dichalcogenides bilayer single crystals is highly-promising for fundamental studies and technological applications.
format Online
Article
Text
id pubmed-6363754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63637542019-02-07 Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy Zhang, Xiumei Nan, Haiyan Xiao, Shaoqing Wan, Xi Gu, Xiaofeng Du, Aijun Ni, Zhenhua Ostrikov, Kostya (Ken) Nat Commun Article Epitaxial growth of atomically thin two-dimensional crystals such as transition metal dichalcogenides remains challenging, especially for producing large-size transition metal dichalcogenides bilayer crystals featuring high density of states, carrier mobility and stability at room temperature. Here we achieve in epitaxial growth of the second monolayer from the first monolayer by reverse-flow chemical vapor epitaxy and produce high-quality, large-size transition metal dichalcogenides bilayer crystals with high yield, control, and reliability. Customized temperature profiles and reverse gas flow help activate the first layer without introducing new nucleation centers leading to near-defect-free epitaxial growth of the second layer from the existing nucleation centers. A series of bilayer crystals including MoS(2) and WS(2), ternary Mo(1−x)W(x)S(2) and quaternary Mo(1−x)W(x)S(2(1−y))Se(2y) are synthesized with variable structural configurations and tunable electronic and optical properties. The robust, potentially universal approach for the synthesis of large-size transition metal dichalcogenides bilayer single crystals is highly-promising for fundamental studies and technological applications. Nature Publishing Group UK 2019-02-05 /pmc/articles/PMC6363754/ /pubmed/30723204 http://dx.doi.org/10.1038/s41467-019-08468-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhang, Xiumei
Nan, Haiyan
Xiao, Shaoqing
Wan, Xi
Gu, Xiaofeng
Du, Aijun
Ni, Zhenhua
Ostrikov, Kostya (Ken)
Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title_full Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title_fullStr Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title_full_unstemmed Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title_short Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
title_sort transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363754/
https://www.ncbi.nlm.nih.gov/pubmed/30723204
http://dx.doi.org/10.1038/s41467-019-08468-8
work_keys_str_mv AT zhangxiumei transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT nanhaiyan transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT xiaoshaoqing transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT wanxi transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT guxiaofeng transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT duaijun transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT nizhenhua transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy
AT ostrikovkostyaken transitionmetaldichalcogenidesbilayersinglecrystalsbyreverseflowchemicalvaporepitaxy