Cargando…

Cyclopamine tartrate, a modulator of hedgehog signaling and mitochondrial respiration, effectively arrests lung tumor growth and progression

Lung cancer remains the leading cause of cancer-related death, despite the advent of targeted therapies and immunotherapies. Therefore, it is crucial to identify novel molecular features unique to lung tumors. Here, we show that cyclopamine tartrate (CycT) strongly suppresses the growth of subcutane...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalainayakan, Sarada Preeta, Ghosh, Poorva, Dey, Sanchareeka, Fitzgerald, Keely E., Sohoni, Sagar, Konduri, Purna Chaitanya, Garrossian, Massoud, Liu, Li, Zhang, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363760/
https://www.ncbi.nlm.nih.gov/pubmed/30723259
http://dx.doi.org/10.1038/s41598-018-38345-1
Descripción
Sumario:Lung cancer remains the leading cause of cancer-related death, despite the advent of targeted therapies and immunotherapies. Therefore, it is crucial to identify novel molecular features unique to lung tumors. Here, we show that cyclopamine tartrate (CycT) strongly suppresses the growth of subcutaneously implanted non-small cell lung cancer (NSCLC) xenografts and nearly eradicated orthotopically implanted NSCLC xenografts. CycT reduces heme synthesis and degradation in NSCLC cells and suppresses oxygen consumption in purified mitochondria. In orthotopic tumors, CycT decreases the levels of proteins and enzymes crucial for heme synthesis, uptake, and oxidative phosphorylation (OXPHOS). CycT also decreases the levels of two regulators promoting OXPHOS, MYC and MCL1, and effectively alleviates tumor hypoxia. Evidently, CycT acts via multiple modes to suppress OXPHOS. One mode is to directly inhibit mitochondrial respiration/OXPHOS. Another mode is to inhibit heme synthesis and degradation. Both modes appear to be independent of hedgehog signaling. Addition of heme to NSCLC cells partially reverses the effect of CycT on oxygen consumption, proliferation, and tumorigenic functions. Together, our results strongly suggest that CycT suppress tumor growth in the lung by inhibiting heme metabolism and OXPHOS. Targeting heme metabolism and OXPHOS may be an effective strategy to combat lung cancer.