Cargando…

Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects

As the elements of integrated circuits are downsized to the nanoscale, the current Cu‐based interconnects are facing limitations due to increased resistivity and decreased current‐carrying capacity because of scaling. Here, the bottom‐up synthesis of single‐crystalline WTe(2) nanobelts and low‐ and...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Seunguk, Kim, Se‐Yang, Kwak, Jinsung, Jo, Yongsu, Kim, Jung Hwa, Lee, Jong Hwa, Lee, Jae‐Ung, Kim, Jong Uk, Yun, Hyung Duk, Sim, Yeoseon, Wang, Jaewon, Lee, Do Hee, Seok, Shi‐Hyun, Kim, Tae‐il, Cheong, Hyeonsik, Lee, Zonghoon, Kwon, Soon‐Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364501/
https://www.ncbi.nlm.nih.gov/pubmed/30775229
http://dx.doi.org/10.1002/advs.201801370
_version_ 1783393293266059264
author Song, Seunguk
Kim, Se‐Yang
Kwak, Jinsung
Jo, Yongsu
Kim, Jung Hwa
Lee, Jong Hwa
Lee, Jae‐Ung
Kim, Jong Uk
Yun, Hyung Duk
Sim, Yeoseon
Wang, Jaewon
Lee, Do Hee
Seok, Shi‐Hyun
Kim, Tae‐il
Cheong, Hyeonsik
Lee, Zonghoon
Kwon, Soon‐Yong
author_facet Song, Seunguk
Kim, Se‐Yang
Kwak, Jinsung
Jo, Yongsu
Kim, Jung Hwa
Lee, Jong Hwa
Lee, Jae‐Ung
Kim, Jong Uk
Yun, Hyung Duk
Sim, Yeoseon
Wang, Jaewon
Lee, Do Hee
Seok, Shi‐Hyun
Kim, Tae‐il
Cheong, Hyeonsik
Lee, Zonghoon
Kwon, Soon‐Yong
author_sort Song, Seunguk
collection PubMed
description As the elements of integrated circuits are downsized to the nanoscale, the current Cu‐based interconnects are facing limitations due to increased resistivity and decreased current‐carrying capacity because of scaling. Here, the bottom‐up synthesis of single‐crystalline WTe(2) nanobelts and low‐ and high‐field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top‐down approach, the bottom‐up growth mode of WTe(2) nanobelts allows systemic characterization of the electrical properties of WTe(2) single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe(2) devices under vacuum and with AlO(x) capping layer follows an ideal pattern for Joule heating, far from edge scattering. High‐field electrical measurements and self‐heating modeling demonstrate that the WTe(2) nanobelts have a breakdown current density approaching ≈100 MA cm(−2), remarkably higher than those of conventional metals and other transition‐metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm(−1)) among the interconnect candidates. The results suggest superior robustness of WTe(2) against high‐bias sweep and its possible applicability in future nanoelectronics.
format Online
Article
Text
id pubmed-6364501
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63645012019-02-15 Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects Song, Seunguk Kim, Se‐Yang Kwak, Jinsung Jo, Yongsu Kim, Jung Hwa Lee, Jong Hwa Lee, Jae‐Ung Kim, Jong Uk Yun, Hyung Duk Sim, Yeoseon Wang, Jaewon Lee, Do Hee Seok, Shi‐Hyun Kim, Tae‐il Cheong, Hyeonsik Lee, Zonghoon Kwon, Soon‐Yong Adv Sci (Weinh) Full Papers As the elements of integrated circuits are downsized to the nanoscale, the current Cu‐based interconnects are facing limitations due to increased resistivity and decreased current‐carrying capacity because of scaling. Here, the bottom‐up synthesis of single‐crystalline WTe(2) nanobelts and low‐ and high‐field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top‐down approach, the bottom‐up growth mode of WTe(2) nanobelts allows systemic characterization of the electrical properties of WTe(2) single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe(2) devices under vacuum and with AlO(x) capping layer follows an ideal pattern for Joule heating, far from edge scattering. High‐field electrical measurements and self‐heating modeling demonstrate that the WTe(2) nanobelts have a breakdown current density approaching ≈100 MA cm(−2), remarkably higher than those of conventional metals and other transition‐metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm(−1)) among the interconnect candidates. The results suggest superior robustness of WTe(2) against high‐bias sweep and its possible applicability in future nanoelectronics. John Wiley and Sons Inc. 2018-12-12 /pmc/articles/PMC6364501/ /pubmed/30775229 http://dx.doi.org/10.1002/advs.201801370 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Song, Seunguk
Kim, Se‐Yang
Kwak, Jinsung
Jo, Yongsu
Kim, Jung Hwa
Lee, Jong Hwa
Lee, Jae‐Ung
Kim, Jong Uk
Yun, Hyung Duk
Sim, Yeoseon
Wang, Jaewon
Lee, Do Hee
Seok, Shi‐Hyun
Kim, Tae‐il
Cheong, Hyeonsik
Lee, Zonghoon
Kwon, Soon‐Yong
Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title_full Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title_fullStr Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title_full_unstemmed Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title_short Electrically Robust Single‐Crystalline WTe(2) Nanobelts for Nanoscale Electrical Interconnects
title_sort electrically robust single‐crystalline wte(2) nanobelts for nanoscale electrical interconnects
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364501/
https://www.ncbi.nlm.nih.gov/pubmed/30775229
http://dx.doi.org/10.1002/advs.201801370
work_keys_str_mv AT songseunguk electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kimseyang electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kwakjinsung electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT joyongsu electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kimjunghwa electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT leejonghwa electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT leejaeung electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kimjonguk electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT yunhyungduk electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT simyeoseon electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT wangjaewon electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT leedohee electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT seokshihyun electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kimtaeil electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT cheonghyeonsik electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT leezonghoon electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects
AT kwonsoonyong electricallyrobustsinglecrystallinewte2nanobeltsfornanoscaleelectricalinterconnects