Cargando…
LiBiNorm: an htseq-count analogue with improved normalisation of Smart-seq2 data and library preparation diagnostics
Protocols for preparing RNA sequencing (RNA-seq) libraries, most prominently “Smart-seq” variations, introduce global biases that can have a significant impact on the quantification of gene expression levels. This global bias can lead to drastic over- or under-representation of RNA in non-linear len...
Autores principales: | Dyer, Nigel P., Shahrezaei, Vahid, Hebenstreit, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366399/ https://www.ncbi.nlm.nih.gov/pubmed/30740268 http://dx.doi.org/10.7717/peerj.6222 |
Ejemplares similares
-
Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways
por: Archer, Nathan, et al.
Publicado: (2016) -
Error estimates for the analysis of differential expression from RNA-seq count data
por: Burden, Conrad J., et al.
Publicado: (2014) -
Reference genes for qRT-PCR normalisation in different tissues, developmental stages, and stress conditions of Hypericum perforatum
por: Zhou, Wen, et al.
Publicado: (2019) -
HTSeq—a Python framework to work with high-throughput sequencing data
por: Anders, Simon, et al.
Publicado: (2015) -
Analysing high-throughput sequencing data in Python with HTSeq 2.0
por: Putri, Givanna H, et al.
Publicado: (2022)