Cargando…
Mechanical regulation of macrophage function - cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages
Mechanical stress maintains tissue homeostasis by regulating many cellular functions including cell proliferation, differentiation, and inflammation and immune responses. In inflammatory microenvironments, macrophages in mechanosensitive tissues receive mechanical signals that regulate various cellu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367847/ https://www.ncbi.nlm.nih.gov/pubmed/30774738 http://dx.doi.org/10.1186/s41232-019-0092-2 |
Sumario: | Mechanical stress maintains tissue homeostasis by regulating many cellular functions including cell proliferation, differentiation, and inflammation and immune responses. In inflammatory microenvironments, macrophages in mechanosensitive tissues receive mechanical signals that regulate various cellular functions and inflammatory responses. Macrophage function is affected by several types of mechanical stress, but the mechanisms by which mechanical signals influence macrophage function in inflammation, such as the regulation of interleukin-1β by inflammasomes, remain unclear. In this review, we describe the role of mechanical stress in macrophage and monocyte cell function. |
---|