Cargando…

Sex Differences in Antidepressant Effect of Sertraline in Transgenic Mouse Models

The main purpose of this study is to explore sex differences in the antidepressant effect of sertraline in genetic knockout or overexpression estrogen-synthesizing enzyme aromatase (Ar) gene mouse models in the forced swim test (FST). Our results demonstrated a significant reduction of depression-li...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Lei, Xu, Yong, Jiang, Wei, Li, Yuhong, Zhang, Xinzhu, Wang, Gang, Li, Rena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369353/
https://www.ncbi.nlm.nih.gov/pubmed/30778289
http://dx.doi.org/10.3389/fncel.2019.00024
Descripción
Sumario:The main purpose of this study is to explore sex differences in the antidepressant effect of sertraline in genetic knockout or overexpression estrogen-synthesizing enzyme aromatase (Ar) gene mouse models in the forced swim test (FST). Our results demonstrated a significant reduction of depression-like behavior in the mice with overexpression of brain aromatase (Thy1-Ar) compared to sex- and age-matched Ar(+/−) mice or wild type control mice. Using HPLC analysis, we also found an association between the brain estrogen-related antidepressive behavior and the regulation of serotonin (5-HT) system. Interestingly, a single dose administration of sertraline (10 mg/kg, i.p.) induced reduction of immobility time was found in all genotypes, except male Ar(+/−) mice. While the underlying mechanisms of sex-specific response on antidepressive effect of sertraline remain to be investigated, our data showed that female mice appear to be more sensitive to sertraline-induced changes of 5-HT system than male mice in the prefrontal cortex (PFC) and the hippocampus (HPC). Further investigation of sex-specific effect of brain estrogen on antidepressant is needed.