Cargando…
Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI
Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370560/ https://www.ncbi.nlm.nih.gov/pubmed/30739842 http://dx.doi.org/10.1016/j.nicl.2019.101699 |
_version_ | 1783394365769515008 |
---|---|
author | De Santis, Silvia Granberg, Tobias Ouellette, Russell Treaba, Constantina A. Herranz, Elena Fan, Qiuyun Mainero, Caterina Toschi, Nicola |
author_facet | De Santis, Silvia Granberg, Tobias Ouellette, Russell Treaba, Constantina A. Herranz, Elena Fan, Qiuyun Mainero, Caterina Toschi, Nicola |
author_sort | De Santis, Silvia |
collection | PubMed |
description | Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack the necessary sensitivity, especially in the early phase of the disease. This study aims at assessing microstructural WM abnormalities in early-stage MS by using ultra-high gradient strength multi-shell diffusion MRI and the restricted signal fraction (FR) from the Composite Hindered and Restricted Model of Diffusion (CHARMED), a metric sensitive to the volume fraction of axons. In 22 early MS subjects (disease duration ≤5 years) and 15 age-matched healthy controls, restricted fraction estimates were obtained through the CHARMED model along with conventional Diffusion Tensor Imaging (DTI) metrics. All imaging parameters were compared cross-sectionally between the MS subjects and controls both in WM lesions and normal-appearing white matter (NAWM). We found a significant reduction in FR focally in WM lesions and widespread in the NAWM in MS patients relative to controls (corrected p < .05). Signal fraction changes in NAWM were not driven by perilesional tissue, nor were they influenced by proximity to the ventricles, challenging the hypothesis of an outside-in pathological process driven by CSF-mediated immune cytotoxic factors. No significant differences were found in conventional DTI parameters. In a cross-validated classification task, FR showed the largest effect size and outperformed all other diffusion imaging metrics in discerning lesions from contralateral NAWM. Taken together, our data provide evidence for the presence of widespread microstructural changes in the NAWM in early MS stages that are, at least in part, unrelated to focal demyelinating lesions. Interestingly, these pathological changes were not yet detectable by conventional diffusion imaging at this early disease stage, highlighting the sensitivity and value of multi-shell diffusion imaging for better characterizing axonal microstructure in MS. |
format | Online Article Text |
id | pubmed-6370560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63705602019-02-21 Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI De Santis, Silvia Granberg, Tobias Ouellette, Russell Treaba, Constantina A. Herranz, Elena Fan, Qiuyun Mainero, Caterina Toschi, Nicola Neuroimage Clin Regular Article Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack the necessary sensitivity, especially in the early phase of the disease. This study aims at assessing microstructural WM abnormalities in early-stage MS by using ultra-high gradient strength multi-shell diffusion MRI and the restricted signal fraction (FR) from the Composite Hindered and Restricted Model of Diffusion (CHARMED), a metric sensitive to the volume fraction of axons. In 22 early MS subjects (disease duration ≤5 years) and 15 age-matched healthy controls, restricted fraction estimates were obtained through the CHARMED model along with conventional Diffusion Tensor Imaging (DTI) metrics. All imaging parameters were compared cross-sectionally between the MS subjects and controls both in WM lesions and normal-appearing white matter (NAWM). We found a significant reduction in FR focally in WM lesions and widespread in the NAWM in MS patients relative to controls (corrected p < .05). Signal fraction changes in NAWM were not driven by perilesional tissue, nor were they influenced by proximity to the ventricles, challenging the hypothesis of an outside-in pathological process driven by CSF-mediated immune cytotoxic factors. No significant differences were found in conventional DTI parameters. In a cross-validated classification task, FR showed the largest effect size and outperformed all other diffusion imaging metrics in discerning lesions from contralateral NAWM. Taken together, our data provide evidence for the presence of widespread microstructural changes in the NAWM in early MS stages that are, at least in part, unrelated to focal demyelinating lesions. Interestingly, these pathological changes were not yet detectable by conventional diffusion imaging at this early disease stage, highlighting the sensitivity and value of multi-shell diffusion imaging for better characterizing axonal microstructure in MS. Elsevier 2019-01-30 /pmc/articles/PMC6370560/ /pubmed/30739842 http://dx.doi.org/10.1016/j.nicl.2019.101699 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article De Santis, Silvia Granberg, Tobias Ouellette, Russell Treaba, Constantina A. Herranz, Elena Fan, Qiuyun Mainero, Caterina Toschi, Nicola Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title | Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title_full | Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title_fullStr | Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title_full_unstemmed | Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title_short | Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI |
title_sort | evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion mri |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370560/ https://www.ncbi.nlm.nih.gov/pubmed/30739842 http://dx.doi.org/10.1016/j.nicl.2019.101699 |
work_keys_str_mv | AT desantissilvia evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT granbergtobias evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT ouelletterussell evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT treabaconstantinaa evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT herranzelena evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT fanqiuyun evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT mainerocaterina evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri AT toschinicola evidenceofearlymicrostructuralwhitematterabnormalitiesinmultiplesclerosisfrommultishelldiffusionmri |