Cargando…

Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling

We evaluated redundant and receptor-specific activities of TRADD, RIPK1, and FADD in RIPK3-expressing HeLa cells lacking expression of these proteins or any combination of two of these factors. We confirmed the opposing role of FADD in TNF- and TRAIL-induced necroptosis and observed an anti-necropto...

Descripción completa

Detalles Bibliográficos
Autores principales: Füllsack, Simone, Rosenthal, Alevtina, Wajant, Harald, Siegmund, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370826/
https://www.ncbi.nlm.nih.gov/pubmed/30741924
http://dx.doi.org/10.1038/s41419-019-1396-5
Descripción
Sumario:We evaluated redundant and receptor-specific activities of TRADD, RIPK1, and FADD in RIPK3-expressing HeLa cells lacking expression of these proteins or any combination of two of these factors. We confirmed the opposing role of FADD in TNF- and TRAIL-induced necroptosis and observed an anti-necroptotic function of TRADD. RIPK1 and TRADD act in a redundant manner in TNF- but not TRAIL-induced apoptosis. Complementary, FADD proved to be sufficient for TRAIL- but not for TNF-induced apoptosis. TRADD and RIPK1, however, redundantly mediated proinflammatory signaling in response to TNF and TRAIL. FADD deficiency sensitized more efficiently for TNFR1-mediated necroptosis than caspase-8 deficiency pointing to a caspase-8 independent inhibitory activity of FADD on TNF-induced necroptosis. Based on these characteristics, we propose a model in which the death receptor-specific activities of TRADD, RIPK1, and FADD are traced back to their hierarchically different position in TNFR1- and TRAIL death receptor signaling.