Cargando…
Computational Causal Modeling of the Dynamic Biomarker Cascade in Alzheimer's Disease
BACKGROUND: Alzheimer's disease (AD) is a major public health concern, and there is an urgent need to better understand its complex biology and develop effective therapies. AD progression can be tracked in patients through validated imaging and spinal fluid biomarkers of pathology and neuronal...
Autores principales: | Petrella, Jeffrey R., Hao, Wenrui, Rao, Adithi, Doraiswamy, P. Murali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378032/ https://www.ncbi.nlm.nih.gov/pubmed/30863455 http://dx.doi.org/10.1155/2019/6216530 |
Ejemplares similares
-
Data-driven causal model discovery and personalized prediction in Alzheimer's disease
por: Zheng, Haoyang, et al.
Publicado: (2022) -
Science to Practice: Translating Automated Brain MRI Volumetry in Alzheimer’s Disease from Research to Routine Diagnostic Use in the Work-Up of Dementia
por: Rathakrishnan, Bharath Gopal, et al.
Publicado: (2014) -
Toward Personalized Network Biomarkers in Alzheimer's Disease: Computing Individualized Genomic and Protein Crosstalk Maps
por: Padmanabhan, Kanchana, et al.
Publicado: (2017) -
Optimal anti-amyloid-beta therapy for Alzheimer’s disease via a personalized mathematical model
por: Hao, Wenrui, et al.
Publicado: (2022) -
Dissecting the Gene Dose-Effects of the APOE ε4 and ε2 Alleles on Hippocampal Volumes in Aging and Alzheimer’s Disease
por: Hostage, Christopher A., et al.
Publicado: (2013)