Cargando…
Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation
The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson’s disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor’s downstream signal...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378141/ https://www.ncbi.nlm.nih.gov/pubmed/30120413 http://dx.doi.org/10.1038/s41380-018-0212-4 |
_version_ | 1783395869671817216 |
---|---|
author | Donthamsetti, Prashant Gallo, Eduardo F. Buck, David C. Stahl, Edward L. Zhu, Ying Lane, J. Robert Bohn, Laura M. Neve, Kim A. Kellendonk, Christoph Javitch, Jonathan A. |
author_facet | Donthamsetti, Prashant Gallo, Eduardo F. Buck, David C. Stahl, Edward L. Zhu, Ying Lane, J. Robert Bohn, Laura M. Neve, Kim A. Kellendonk, Christoph Javitch, Jonathan A. |
author_sort | Donthamsetti, Prashant |
collection | PubMed |
description | The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson’s disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor’s downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G proteindependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in “indirect pathway” medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wildtype D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wildtype D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics. |
format | Online Article Text |
id | pubmed-6378141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63781412019-02-17 Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation Donthamsetti, Prashant Gallo, Eduardo F. Buck, David C. Stahl, Edward L. Zhu, Ying Lane, J. Robert Bohn, Laura M. Neve, Kim A. Kellendonk, Christoph Javitch, Jonathan A. Mol Psychiatry Article The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson’s disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor’s downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G proteindependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in “indirect pathway” medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wildtype D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wildtype D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics. 2018-08-17 2020-09 /pmc/articles/PMC6378141/ /pubmed/30120413 http://dx.doi.org/10.1038/s41380-018-0212-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Donthamsetti, Prashant Gallo, Eduardo F. Buck, David C. Stahl, Edward L. Zhu, Ying Lane, J. Robert Bohn, Laura M. Neve, Kim A. Kellendonk, Christoph Javitch, Jonathan A. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title | Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title_full | Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title_fullStr | Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title_full_unstemmed | Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title_short | Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation |
title_sort | arrestin recruitment to dopamine d2 receptor mediates locomotion but not incentive motivation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378141/ https://www.ncbi.nlm.nih.gov/pubmed/30120413 http://dx.doi.org/10.1038/s41380-018-0212-4 |
work_keys_str_mv | AT donthamsettiprashant arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT galloeduardof arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT buckdavidc arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT stahledwardl arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT zhuying arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT lanejrobert arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT bohnlauram arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT nevekima arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT kellendonkchristoph arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation AT javitchjonathana arrestinrecruitmenttodopamined2receptormediateslocomotionbutnotincentivemotivation |