Cargando…
CRISPR-PIN: Modifying gene position in the nucleus via dCas9-mediated tethering
Spatial organization of DNA within the nucleus is important for controlling DNA replication and repair, genetic recombination, and gene expression. Here, we present CRISPR-PIN, a CRISPR/dCas9-based tool that allows control of gene Position in the Nucleus for the yeast Saccharomyces cerevisiae. This...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378893/ https://www.ncbi.nlm.nih.gov/pubmed/30820479 http://dx.doi.org/10.1016/j.synbio.2019.02.001 |
Sumario: | Spatial organization of DNA within the nucleus is important for controlling DNA replication and repair, genetic recombination, and gene expression. Here, we present CRISPR-PIN, a CRISPR/dCas9-based tool that allows control of gene Position in the Nucleus for the yeast Saccharomyces cerevisiae. This approach utilizes a cohesin-dockerin interaction between dCas9 and a perinuclear protein. In doing so, we demonstrate that a single gRNA can enable programmable interaction of nuclear DNA with the nuclear periphery. We demonstrate the utility of this approach for two applications: the controlled segregation of an acentric plasmid and the re-localization of five endogenous loci. In both cases, we obtain results on par with prior reports using traditional, more cumbersome genetic systems. Thus, CRISPR-PIN offers the opportunity for future studies of chromosome biology and gene localization. |
---|