Cargando…
Manipulating fenestrations in young and old liver sinusoidal endothelial cells
Fenestrations are pores within liver sinusoidal endothelial cells (LSECs) that enable the transfer of substrates (particularly insulin and lipoproteins) between blood and hepatocytes. With increasing age, there are marked reductions in fenestrations, referred to as pseudocapillarization. Currently,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383376/ https://www.ncbi.nlm.nih.gov/pubmed/30285464 http://dx.doi.org/10.1152/ajpgi.00179.2018 |
_version_ | 1783396832849690624 |
---|---|
author | Hunt, Nicholas J. Lockwood, Glen P. Warren, Alessandra Mao, Hong McCourt, Peter A. G. Le Couteur, David G. Cogger, Victoria C. |
author_facet | Hunt, Nicholas J. Lockwood, Glen P. Warren, Alessandra Mao, Hong McCourt, Peter A. G. Le Couteur, David G. Cogger, Victoria C. |
author_sort | Hunt, Nicholas J. |
collection | PubMed |
description | Fenestrations are pores within liver sinusoidal endothelial cells (LSECs) that enable the transfer of substrates (particularly insulin and lipoproteins) between blood and hepatocytes. With increasing age, there are marked reductions in fenestrations, referred to as pseudocapillarization. Currently, fenestrations are thought to be regulated by vascular endothelial growth factor and nitric oxide (NO) pathways promoting remodeling of the actin cytoskeleton and cell membrane lipid rafts. We investigated the effects of drugs that act on these pathways on fenestrations in old (18–24 mo) and young mice (3–4 mo). Isolated LSECs were incubated with either cytochalasin 7-ketocholesterol, sildenafil, amlodipine, simvastatin, 2, 5-dimethoxy-4-iodoamphetamine (DOI), bosentan, TNF-related apoptosis-inducing ligand (TRAIL) or nicotinamide mononucleotide (NMN). LSECs were visualized under scanning electron microscopy to quantify fenestration porosity, diameter, and frequency, as well as direct stochastic optical reconstruction microscopy to examine actin and NO synthase. In young and old LSECs, fenestration porosity, diameter and frequency were increased by 7-ketocholesterol, while porosity and/or frequency were increased with NMN, sildenafil, amlodipine, TRAIL, and cytochalasin D. In old mice only, bosentan and DOI increased fenestration porosity and/or frequency. Modification of the actin cytoskeleton was observed with all agents that increased fenestrations, while NO synthase was only increased by sildenafil, amlodipine, and TRAIL. In conclusion, agents that target NO, actin, or lipid rafts promote changes in fenestrations in mice LSECs. Regulation of fenestrations occurs via both NO-dependent and independent pathways. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance. NEW & NOTEWORTHY We demonstrate the effects of multiple nitric oxide-dependent and -independent pharmaceutical agents on fenestrations of the liver sinusoidal endothelium. Fenestrations are reorganized in response to nicotinamide mononucleotide, sildenafil, amlodipine, and TNF-related apoptosis-inducing ligand. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance in old age. |
format | Online Article Text |
id | pubmed-6383376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Physiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-63833762019-02-25 Manipulating fenestrations in young and old liver sinusoidal endothelial cells Hunt, Nicholas J. Lockwood, Glen P. Warren, Alessandra Mao, Hong McCourt, Peter A. G. Le Couteur, David G. Cogger, Victoria C. Am J Physiol Gastrointest Liver Physiol Research Article Fenestrations are pores within liver sinusoidal endothelial cells (LSECs) that enable the transfer of substrates (particularly insulin and lipoproteins) between blood and hepatocytes. With increasing age, there are marked reductions in fenestrations, referred to as pseudocapillarization. Currently, fenestrations are thought to be regulated by vascular endothelial growth factor and nitric oxide (NO) pathways promoting remodeling of the actin cytoskeleton and cell membrane lipid rafts. We investigated the effects of drugs that act on these pathways on fenestrations in old (18–24 mo) and young mice (3–4 mo). Isolated LSECs were incubated with either cytochalasin 7-ketocholesterol, sildenafil, amlodipine, simvastatin, 2, 5-dimethoxy-4-iodoamphetamine (DOI), bosentan, TNF-related apoptosis-inducing ligand (TRAIL) or nicotinamide mononucleotide (NMN). LSECs were visualized under scanning electron microscopy to quantify fenestration porosity, diameter, and frequency, as well as direct stochastic optical reconstruction microscopy to examine actin and NO synthase. In young and old LSECs, fenestration porosity, diameter and frequency were increased by 7-ketocholesterol, while porosity and/or frequency were increased with NMN, sildenafil, amlodipine, TRAIL, and cytochalasin D. In old mice only, bosentan and DOI increased fenestration porosity and/or frequency. Modification of the actin cytoskeleton was observed with all agents that increased fenestrations, while NO synthase was only increased by sildenafil, amlodipine, and TRAIL. In conclusion, agents that target NO, actin, or lipid rafts promote changes in fenestrations in mice LSECs. Regulation of fenestrations occurs via both NO-dependent and independent pathways. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance. NEW & NOTEWORTHY We demonstrate the effects of multiple nitric oxide-dependent and -independent pharmaceutical agents on fenestrations of the liver sinusoidal endothelium. Fenestrations are reorganized in response to nicotinamide mononucleotide, sildenafil, amlodipine, and TNF-related apoptosis-inducing ligand. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance in old age. American Physiological Society 2019-01-01 2018-10-04 /pmc/articles/PMC6383376/ /pubmed/30285464 http://dx.doi.org/10.1152/ajpgi.00179.2018 Text en Copyright © 2019 the American Physiological Society http://creativecommons.org/licenses/by/4.0/deed.en_US Licensed under Creative Commons Attribution CC-BY 4.0 (http://creativecommons.org/licenses/by/4.0/deed.en_US) : © the American Physiological Society. |
spellingShingle | Research Article Hunt, Nicholas J. Lockwood, Glen P. Warren, Alessandra Mao, Hong McCourt, Peter A. G. Le Couteur, David G. Cogger, Victoria C. Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title | Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title_full | Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title_fullStr | Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title_full_unstemmed | Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title_short | Manipulating fenestrations in young and old liver sinusoidal endothelial cells |
title_sort | manipulating fenestrations in young and old liver sinusoidal endothelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383376/ https://www.ncbi.nlm.nih.gov/pubmed/30285464 http://dx.doi.org/10.1152/ajpgi.00179.2018 |
work_keys_str_mv | AT huntnicholasj manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT lockwoodglenp manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT warrenalessandra manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT maohong manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT mccourtpeterag manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT lecouteurdavidg manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells AT coggervictoriac manipulatingfenestrationsinyoungandoldliversinusoidalendothelialcells |