Cargando…
Fast and flexible linear mixed models for genome-wide genetics
Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced po...
Autores principales: | Runcie, Daniel E., Crawford, Lorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383949/ https://www.ncbi.nlm.nih.gov/pubmed/30735486 http://dx.doi.org/10.1371/journal.pgen.1007978 |
Ejemplares similares
-
MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits
por: Runcie, Daniel E., et al.
Publicado: (2021) -
A fast-linear mixed model for genome-wide haplotype association analysis: application to agronomic traits in maize
por: Chen, Heli, et al.
Publicado: (2020) -
Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies
por: Stamp, Julian, et al.
Publicado: (2023) -
Further Improvements to Linear Mixed Models for Genome-Wide Association
Studies
por: Widmer, Christian, et al.
Publicado: (2014) -
Efficient Algorithms for Multivariate Linear Mixed Models in Genome-wide Association Studies
por: Zhou, Xiang, et al.
Publicado: (2014)