Cargando…
Fast and Automatic Reconstruction of Semantically Rich 3D Indoor Maps from Low-quality RGB-D Sequences
Semantically rich indoor models are increasingly used throughout a facility’s life cycle for different applications. With the decreasing price of 3D sensors, it is convenient to acquire point cloud data from consumer-level scanners. However, most existing methods in 3D indoor reconstruction from poi...
Autores principales: | Tang, Shengjun, Zhang, Yunjie, Li, You, Yuan, Zhilu, Wang, Yankun, Zhang, Xiang, Li, Xiaoming, Zhang, Yeting, Guo, Renzhong, Wang, Weixi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387083/ https://www.ncbi.nlm.nih.gov/pubmed/30691244 http://dx.doi.org/10.3390/s19030533 |
Ejemplares similares
-
Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking
por: Tang, Shengjun, et al.
Publicado: (2018) -
Multi-scale fusion for RGB-D indoor semantic segmentation
por: Jiang, Shiyi, et al.
Publicado: (2022) -
Automatic Indoor as-Built Building Information Models Generation by Using Low-Cost RGB-D Sensors
por: Li, Yaxin, et al.
Publicado: (2020) -
Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling
por: Tang, Shengjun, et al.
Publicado: (2016) -
RGB-D Object SLAM Using Quadrics for Indoor Environments
por: Liao, Ziwei, et al.
Publicado: (2020)