Cargando…
Association of the MDM2 SNP285 and SNP309 Genetic Variants with the Risk, Age at Onset and Prognosis of Breast Cancer in Central European Women: A Hospital-Based Case-Control Study
SNP309T>G (rs2279744) and SNP285G>C (rs117039649) in the MDM2 promoter are thought to have opposite effects on the binding of transcription factor SP1 (specificity protein 1), and consequently on MDM2 expression, p53 levels, cancer risk, age at onset, and prognosis. Here, we genotyped SNP309 a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387136/ https://www.ncbi.nlm.nih.gov/pubmed/30691044 http://dx.doi.org/10.3390/ijms20030509 |
Sumario: | SNP309T>G (rs2279744) and SNP285G>C (rs117039649) in the MDM2 promoter are thought to have opposite effects on the binding of transcription factor SP1 (specificity protein 1), and consequently on MDM2 expression, p53 levels, cancer risk, age at onset, and prognosis. Here, we genotyped SNP309 and SNP285 in 406 Austrian breast cancer patients and 254 female controls. The SNP309GG genotype was associated with an increased breast cancer risk in p53 negative (OR, 1.82; 95% CI, 1.09–3.03; p = 0.02), but not p53 positive or unselected patients. In contrast, the SNP309TT genotype was associated with an earlier age at onset (TT, 57.0 ± 12.9; TG, 58.6 ± 13.9; GG, 59.7 ± 15.0 years; p = 0.048). 31% of SNP309TT, 26% of TG, and 13% of GG tumors were p53 positive (p = 0.034), indicating a lower selective pressure to mutate TP53 in the presence of the G-allele. Moreover, SNP309TT patients exhibited a shortened metastasis-free survival in multivariable analysis. Censoring carriers of the SNP285C-allele hardly altered the strength of these associations of SNP309, thus challenging the proposed antagonistic function of SNP285C towards SNP309G. The minor SNP285C-allele tended to be non-significantly associated with an increased breast cancer risk and a poor disease-free and metastasis-free survival, which may be bystander effects of its complete linkage disequilibrium with SNP309G. We conclude that the SNP309G-allele attenuates the p53-response and leads to a higher breast cancer risk, but also to a later onset of breast cancer and a trend towards a good prognosis. |
---|